Advertisement

Layer by Layer Photo-Cross-Linked Environmental Functional hydrogel Thin Films Based on Vanillin: Part 3

  • Momen S. A. AbdelatyEmail author
Original paper
  • 13 Downloads

Abstract

The present work emphasizes the preparation of new monomer from the family of vanillin acrylate. It has been prepared in two steps the name of the final product is [2-((ditert-butylamino) methyl)-4-formyl-6-methoxyphenyl acrylate] and abbreviated by TBAMVA, both products were evaluated by 1H, 13C NMR and FTIR and they were in the logic case with the chemical structure. The next step was the preparation of three different pH and temperature responsive copolymers by free radical polymerization of 5, 10, 20 mol% of TBAMVA and 5 mol% of maleimide photo-cross-linker with N-isopropylacrylamide. Polymers were chemically and physically characterized indicating the presence of the aldehyde group in the main chain. The lower critical solution temperature of polymers has been determined by two methods; the first one using turbidity measurements by UV–Vis Spectroscopy, another method using micro-DSC. The last step was the formation of pH-Temperature responsive hydrogel layer over gold and studying the swelling properties response to pH and temperature using surface plasmon resonance with the optical waveguide. In the present work, we focused on synthesizing new environmental functional polymers and hydrogel thin films used as biosensor as a target for many biological molecules in biosynthesis, drug delivery, and bio-separation.

Keywords

Environmental polymers Functional Photo-cross-linked Hydrogel layers Vanillin 

Notes

Acknowledgements

The authors are grateful acknowledge to Egyptian culture and missions, and The Deutscher Akademischer Austauch (DAAD) for financial assistance during the post doctor work in Germany of Momen S.A. Abdelaty.

Compliance with Ethical Standards

Conflict of interest

The author declares no conflict of interest.

References

  1. 1.
    Fengjuan JA, Shuo C, Ziquan C, Guojie W (2016) Polymer 83:91.  https://doi.org/10.1016/j.polymer.2015.12.027 Google Scholar
  2. 2.
    Xiaojie Y, Jiawei L, Lingmin Y (2017) Mater Lett 208:49.  https://doi.org/10.1016/j.matlet.2017.05.029 Google Scholar
  3. 3.
    Jialing C, Zhaoyang D, Hongxia P, Xuejun C (2017) Talanta 174:256–264.  https://doi.org/10.1016/j.talanta.2017.05.027 CrossRefGoogle Scholar
  4. 4.
    Chang K, Rubright N, Lowery PD, Taite LJ (2013) J Polym Sci A Polym Chem 51:2078.  https://doi.org/10.1002/pola.26596 Google Scholar
  5. 5.
    Heskins M, Guillet JE (1968) J Macromol Sci Chem A 2:1455.  https://doi.org/10.1080/10601326808051910 CrossRefGoogle Scholar
  6. 6.
    Iatridi Z, Mattheolabakis G, Avgoustakis K, Tsitsilianis C (2011) Soft Matter 7:11168.  https://doi.org/10.1039/C1SM06185B CrossRefGoogle Scholar
  7. 7.
    Abdelaty MSA (2018) J Polym Environ 26:2256.  https://doi.org/10.1007/s10924-017-1126-y Google Scholar
  8. 8.
    Abdelaty MSA (2018) J Polym Environ 26:646.  https://doi.org/10.1007/s10924-017-0960-2 Google Scholar
  9. 9.
    Young-Jin K, Yukiko TM (2017) J Mater Chem B 5:4321.  https://doi.org/10.1039/C7TB00157F Google Scholar
  10. 10.
    Abdelaty MSA (2018) Polym Bull 11:4858.  https://doi.org/10.1007/s00289-018-2297-y Google Scholar
  11. 11.
    Abdelaty MSA (2018) Biomolecules 8:154.  https://doi.org/10.3390/biom8040138 CrossRefGoogle Scholar
  12. 12.
    Abdelaty MSA, Kuckling D (2016) Gels 2: 76.  https://doi.org/10.3390/gels2010003
  13. 13.
    Andrés Díaz L (2017) Polymers 9:19CrossRefGoogle Scholar
  14. 14.
    Renjith P, Johnsona S, Uthamanb R, Augustinea Yu, Zhanga, Hua Jina, Chang In Choic, Parkb I-K, Il Kima (2017) Reactive Functional Polymers 119: 47  https://doi.org/10.1016/j.reactfunctpolym.2017.07.010 CrossRefGoogle Scholar
  15. 15.
    Elvan Yilmaza Z, Yalincaa (2016) Kovan Yahyaa,b, Uliana Sirotinaa. Int J Biol Macromol 90:74.  https://doi.org/10.1016/j.ijbiomac.2015.10.003 Google Scholar
  16. 16.
    Soppimath KS, Tan DCW, Yang YY (2005) Adv Mater 17:323.  https://doi.org/10.1002/adma.200401057 CrossRefGoogle Scholar
  17. 17.
    Delcea M, Möhwald H, Skirtach AG (2011) Adv Drug Deliv Rev 63:747.  https://doi.org/10.1016/j.addr.2011.03.010 CrossRefGoogle Scholar
  18. 18.
    Uhlig K, Boysen B, Lankenau A, Jaeger M, Wischerhoff E, Lutz JF, Laschewsky A, Duschl C (2012) Biomicrofluidics 6:21.  https://doi.org/10.1063/1.4729130 CrossRefGoogle Scholar
  19. 19.
    Sepehrifar R, Reinhard I, Boysen B, Danylec Y, Yang K, Milton S, Hearn TW (2017) Anal Chim Acta 963:163.  https://doi.org/10.1016/j.aca.2017.01.061 CrossRefGoogle Scholar
  20. 20.
    Kanazawa H, Okano TJ (2011) Chromatogr A 1218:8747CrossRefGoogle Scholar
  21. 21.
    Han X, Zhang X, Zhu H, Yin Q, Liu H, Hu Y (2013) Langmuir 29:1034Google Scholar
  22. 22.
    Xiong Z, Peng B, Han X, Peng C, Liu H, Hu Y (2011) J Colloid Interface Sci 356:565Google Scholar
  23. 23.
    Feng X, Wu H, Sui X, Hempenius MA, JuliusVancso G, Vancso (2015) Eur Polym J 72:542.  https://doi.org/10.1016/j.eurpolymj.2015.05.022 CrossRefGoogle Scholar
  24. 24.
    Tokarev I, Minko S (2009) Soft Matter 5:524.  https://doi.org/10.1039/B813827C CrossRefGoogle Scholar
  25. 25.
    Yang HW, Chena JK, Cheng CC, Kuo SW (2013) Appl Surf Sci 271:69.  https://doi.org/10.1016/j.apsusc.2013.01.074 Google Scholar
  26. 26.
    Gauthier MA, Gibson MI, Klok HA (2009) Angew Chem Int Ed 48:58.  https://doi.org/10.1002/anie.200801951 CrossRefGoogle Scholar
  27. 27.
    Fuchs AD, Tiller JC (2006) Angew Chem Int Ed 45:6762.  https://doi.org/10.1002/anie.200602738 CrossRefGoogle Scholar
  28. 28.
    Zolotukhin MG, Colquhoun HM, Sestiaa LG, Rueda DR, Flot D (2003) Macromolecule 36:4771.  https://doi.org/10.1021/ma0216977 CrossRefGoogle Scholar
  29. 29.
    Kanazawa H, Yamamoto K, Matsushima Y, Takai N, Kikuchi A, Sakurai Y, Okano T (1996) Anal Chem 68:105.  https://doi.org/10.1021/ac950359j CrossRefGoogle Scholar
  30. 30.
    Kuckling D, Harmon ME, Frank CW (2002) Macromolecules 35:6004.  https://doi.org/10.1021/ma010985k CrossRefGoogle Scholar
  31. 31.
    Harmon ME, Kuckling D, Frank CW (2003) Macromolecules 36:172.  https://doi.org/10.1021/ma021025g CCCCrossRefGoogle Scholar
  32. 32.
    Nan Zhang N, Knoll W (2009) Anal Chem 81: 2617.  https://doi.org/10.1021/ac802527j Google Scholar
  33. 33.
    Aulasevich A, Junk MJN, Jakubowicz P, Roskamp RF, Menges B, Jonas U, Knoll W (2010) Macrmol Chem Phys 211:1025.  https://doi.org/10.1002/macp.200900533 Google Scholar
  34. 34.
    Chen JK, Chan CH, Chang FC (2008) Appl Phys Lett 92:053108.  https://doi.org/10.1063/1.2939218 CrossRefGoogle Scholar
  35. 35.
    Chan CH, Chen JK, Chang FC (2008) Sens Actuators B 133:332 https://doi.org/10.1016/j.snb.2008.02.041 CrossRefGoogle Scholar
  36. 36.
    Chen JK, Li JY (2010) Sens Actuatators B 150: 320.  https://doi.org/10.1016/j.snb.2010.06.067 CrossRefGoogle Scholar
  37. 37.
    Hosoya K, Kubo T, Tanaka N, Haginaka JA (2003) J Pharm Biomed Anal 30: 1919.  https://doi.org/10.1016/S0731-7085(02)00535-6
  38. 38.
    Lu Y, Mei Y, Drechsler M, Ballauff M (2006) Angew Chem Int Ed 45:816.  https://doi.org/10.1002/anie.200502731 CrossRefGoogle Scholar
  39. 39.
    Chen JK, Wang JH, Chang JYF (2012) Appl Phys Lett 101:123701.  https://doi.org/10.1063/1.4754135 CrossRefGoogle Scholar
  40. 40.
    Costa E, Coelho M, Ilharco LM, Aguiar-Ricardo A, Hammond PT (2011) Macromolecules 44:621.  https://doi.org/10.1021/ma1025016 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of Science (Assiut)Al-Azhar UniversityAssiutEgypt

Personalised recommendations