Advertisement

Journal of Polymers and the Environment

, Volume 27, Issue 5, pp 901–916 | Cite as

Critical Review of Microbial Degradation of Aromatic Compounds and Exploring Potential Aspects of Furfuryl Alcohol Degradation

  • Priyaragini Singh
  • Rakesh KumarEmail author
Review
  • 64 Downloads

Abstract

Last century witnessed widespread use of phenolic and polycyclic aromatic hydrocarbons (PAHs) as dyes, polymers, plastics, pigments and also in pharmaceutical sectors. However, the uses of both these compounds in monomeric or polymeric form are being discouraged because of its origin from non-renewable resources. Due to the environmental concern, there is a great need of eco-friendly material. Hence, several countries are adopting green products or products based on renewable material. Among several materials, furfuryl alcohol (FA), polymerized furfuryl alcohol and lignin show tremendous applications as solvent, resins and bioplastics or biopolymers. Once these materials either in liquid and solid form are used, then there are chances that these materials will be disposed of through land fill system. We have discussed the microbes responsible for degrading lignin as well as widely used phenols and PAHs along with the parameters involved in the degradation process of these monomers or polymers so that the probable degrading microbes for FA and their pathways can be proposed. Lastly, we have tried to present the degradation kinetics of all four aromatic compounds with literature available till date.

Keywords

Biodegradation Degradation kinetics Furfuryl alcohol Lignin PAH Polyfurfuryl alcohol 

Notes

References

  1. 1.
    Bera S, Roy AS, Mohanty K (2017) Int Biodeterior Biodegrad 121:107–113Google Scholar
  2. 2.
    Huang Z, Wang P, Li H, Lin K, Lu Z, Guo X, Liu Y (2014) Int Biodeterior Biodegrad 94:115–120Google Scholar
  3. 3.
    Brebu M, Cazacu G, Chirila O (2011) Cell Chem Technol 45:43–50Google Scholar
  4. 4.
    Shourian M, Noghabi KA, Zahiri HS, Bagheri T, Karballaei G, Mollaei M, Rad I, Ahadi S, Raheb J, Abbasi H (2009) Desalination 246:577–594Google Scholar
  5. 5.
    Liu J, Yu Y, Chang Y, Li B, Bian D, Yang W, Huo H, Huo M, Zhu S (2016) Int Biodeterior Biodegrad 115:74–82Google Scholar
  6. 6.
    Goyal AK, Zylstra GJ (1997) Ind Microbiol Biotech 19:401–407Google Scholar
  7. 7.
    Kumar R, Kumar R, Anandjiwala R (2012) Plast Rubber Compos: Macro Eng 41:1–7Google Scholar
  8. 8.
    Virtamo M, Tossavainen A (1976) Scand J Work Environ Health 2(1):50–53Google Scholar
  9. 9.
    Maga JA (1979) CRC Critical Reviews. Food Sci Nutr 11:355–400Google Scholar
  10. 10.
    Franko J, Laurel G. Jackson AH, Kashon M, Meade BJ, Stacey EA (2012) Toxicol Sci 125(1):105–115Google Scholar
  11. 11.
    Mollaei M, Abdollahpour S, Atashgahi S, Abbasi H, Masoomi F, Rad I, Lotfi AS, Zahiri HS, Vali H, Noghabi KA (2010) J Hazard Mater 175:284–292Google Scholar
  12. 12.
    Pazarlioğlu NK, Telefoncu A (2005) Process Biochem 40:1807–1814Google Scholar
  13. 13.
    Prpich GP, Daugulis AJ (2005) Biodegradation 16:329–339Google Scholar
  14. 14.
    Santos VL, Linardi VR (2004) Process Biochem 39:1001–1006Google Scholar
  15. 15.
    Arutchelvan V, Kanakasabai V, Elangovan R, Nagarajan S, Muralikrishnan V (2006) J Hazard Mater 129:216–222Google Scholar
  16. 16.
    Wei G, Yu J, Zhu Y, Chen W, Wang L (2008) J Hazard Mater 151:111–117Google Scholar
  17. 17.
    Dong CD, Chen CF, Chen CW (2012) Int J Environ Res Publ Health 9:2175–2188Google Scholar
  18. 18.
    Inomata Y, Kajino M, Sato K, Ohara T, Kurokawa J, Ueda H, Tang N, Hayakawa K, Ohizumi T, Akimoto H (2012) Environ Sci Technol 46:4941–4949Google Scholar
  19. 19.
    Kim KH, Jahan SA, Kabir E, Brown RJ (2013) Environ Int 60:71–80Google Scholar
  20. 20.
    Abdel-Shafy HI, Mansour MSM (2016) Egypt J Pet 25:107–123Google Scholar
  21. 21.
    Kanaly RA, Harayama S (2000) J Bacteriol 182:2059–2067Google Scholar
  22. 22.
    Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, Tian YS, Yao QH (2008) FEMS Microbiol Rev 32:927–955Google Scholar
  23. 23.
    Seo JS, Keum YS, Li QX (2009) Int J Environ Res Publ Health 6:278–309Google Scholar
  24. 24.
    Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE (2014) Science 344:1246843Google Scholar
  25. 25.
    Cesarino I, Araújo P, Domingues Júnior AP, Mazzafera P (2012) Braz J Bot 35(4):303–311Google Scholar
  26. 26.
    Berryman D, Houde F, DeBlois C, O’Shea M (2004) Chemosphere 56:247–255Google Scholar
  27. 27.
    Lisboa SA, Evtuguin DV, Neto CP, Goodfellow BJ (2005) Carbohydr Polym 60:77–85Google Scholar
  28. 28.
    Koljonen K, Osterberg M, Kleen M, Fuhrmann A, Stenius P (2004) Cellulose 11:209–224Google Scholar
  29. 29.
    Chandra R, Raj A, Purohit HJ, Kapley A (2007) Chemosphere 67:839–846Google Scholar
  30. 30.
    Chang CN, Ma YS, Fang GC, Chao AC, Tsai MC, Sung HF (2004) Chemosphere 56:1011–1017Google Scholar
  31. 31.
    Gupta VK, Ali I (2004) J Colloid Interface Sci 271:321–328Google Scholar
  32. 32.
    Gupta VK, Ali I, Saini VK, Van Gerven T, Van der Bruggen B, Vandecasteele C (2005) Ind Eng Chem Res 44:3655–3664Google Scholar
  33. 33.
    Kumar R (2016) J Polym. Article ID 7249743.  https://doi.org/10.1155/2016/7249743 Google Scholar
  34. 34.
    Agbogbo FK, Wenger KS (2007) J Ind Microbiol Biotechnol 34:723–727Google Scholar
  35. 35.
    Almeida JR, Bertilsson M, Gorwa-Grauslund MF, Gorsich S, Liden G (2009) Appl Microbiol Biotechnol 82:625–638Google Scholar
  36. 36.
    Kumar R, Anandjiwala RD (2013) J Therm Anal Calorim 112:755–760Google Scholar
  37. 37.
    Linganiso L, Kumar R, Anandjiwala RD (2014) J Biobased Mater Bioenergy 8(3):299–307Google Scholar
  38. 38.
    Pranger L, Tannenbaum R (2008) Macromolecules 41:8682–8687Google Scholar
  39. 39.
    Kumar H, Mohanty K (2012) Asian J Water Environ Pollut 9(3):19–24Google Scholar
  40. 40.
    Van de Velde K, Kiekens P (2002) Polym Test 21:433–442Google Scholar
  41. 41.
    Yang RD, Humphrey AE (1975) Biotechnol Bioeng 17:1211–1235Google Scholar
  42. 42.
    Paller G, Hommel RK, Kleber HP (1995) J Basic Microbiol 35:325–335Google Scholar
  43. 43.
    Leonard D, Lindley ND (1998) Microbiology 144:241–248Google Scholar
  44. 44.
    Schroder M, Muller C, Posten C, Deckwer WD, Hecht V (1997) Biotechnol Bioeng 54:567–576Google Scholar
  45. 45.
    Cho YG, Rhee SK, Lee ST (2000) Biodegradation 11:21–28Google Scholar
  46. 46.
    Leitao AL, Duarte MP, Oliveira JS (2007) Int Biodeterior Biodegrad 59:220–225Google Scholar
  47. 47.
    Haddadi A, Shavandi M (2013) Int Biodeterior Biodegrad 85:29–34Google Scholar
  48. 48.
    Lu Z, Guo X, Li H, Huang Z, Lin K, Liu Y (2015) Int J Mol Sci 16:11834–11848Google Scholar
  49. 49.
    Banerjee A, Ghoshal AK (2010) J Hazard Mater 176:85–91Google Scholar
  50. 50.
    Acikgoz E, Ozcan B (2016) Int Biodeterior Biodegrad 107:140–146Google Scholar
  51. 51.
    Ma D, Zou D, Zhou D, Li T, Dong S, Xu Z, Dong S (2015) Int Biodeterior Biodegrad 104:178–185Google Scholar
  52. 52.
    Pradhan B, Murugavelh S, Mohanty K (2012) Environ Eng Sci 29(2):86–92Google Scholar
  53. 53.
    Hasan SA, Jabeen S (2015) Biotechnol Biotechnol Equip 29:45–53Google Scholar
  54. 54.
    Afzal M, Iqbal S, Rauf S, Khalid ZM (2007) J Hazard Mater 149:60–66Google Scholar
  55. 55.
    Razika B, Abbes B, Messaoud C, Soufi K (2010) Int J Water Res Environ 2(9):788–791Google Scholar
  56. 56.
    Ojumu T, Bello O, Solomon B (2005) Afr J Biotechnol 4(1):31–35Google Scholar
  57. 57.
    Agarry SE, Durojaiye AO, Yusuf RO, Aremu MO, Solomon BO, Mojeed O (2008) Int J Environ Pollut 32(1):3–11Google Scholar
  58. 58.
    Anselmo A, Novais JM (1992) Water Sci Technol 25(1):161–168Google Scholar
  59. 59.
    Hank DNS, Abdelkader NAH (2010) J Eng Sci Tech Rev 3(1):123–127Google Scholar
  60. 60.
    Cerniglia CE (2003) Recent advances in the biodegradation of polycyclic aromatic hydrocarbons by Mycobacterium Species. In: Sasek V, Glaser JA, Baveye P (ed) The utilization of bioremediation to reduce soil contamination: problems and solutions. Springer, Dordrecht, 19, pp 51–73Google Scholar
  61. 61.
    Dandie CE, Thomas SM, Bentham RH, McClure NC (2004) J Appl Microbiol 97:246–255Google Scholar
  62. 62.
    Wang C, Sun H, Li J, Li Y, Zhang Q (2009) Chemosphere 77:733–738Google Scholar
  63. 63.
    Teng Y, Luo Y, Sun M, Liu Z, Li Z, Christie P (2010) Bioresour Technol 101:3437–3443Google Scholar
  64. 64.
    Ghosal D, Ghosh S, Dutta TK, Ahn Y (2016) Front Microbiol 7:1369–1395Google Scholar
  65. 65.
    Cerniglia CE, Sutherland JB (2010) Degradation of polycyclic aromatic hydrocarbons by fungi. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 2079–2110Google Scholar
  66. 66.
    Hofrichter M (2002) Enzyme Microb Technol 30(4):454–466Google Scholar
  67. 67.
    Li X, Lin X, Zhang J, Wu Y, Yin R, Feng Y, Wang Y (2010) Curr Microbiol 60:336–342Google Scholar
  68. 68.
    Tortella GR, Diez MC, Durán N (2005) Crit Rev Microbiol 31:197–212Google Scholar
  69. 69.
    Hammel KE, Green B, Gai WZ (1991) Proc Natl Acad Sci USA 88:10605–10608Google Scholar
  70. 70.
    Kadri T, Rouissi T, Brar S, Cledón M, Sarma S, Verma M (2017) J Environ Sci 51:57–74Google Scholar
  71. 71.
    Luo S, Chen B, Lin Li, Wang X, Tam NFY, Luan T (2014) Environ Sci Technol 48(23):13917–13924Google Scholar
  72. 72.
    Nagarathnamma R, Bajpai P, Bajpai P (1999) Process Biochem 34(9):939–948Google Scholar
  73. 73.
    Daniel G, Nilsson T (1998) Developments in the study of soft rot and bacterial decay. In: Bruce A, Palfreyman JW (eds) Forest products biotechnology. Taylor and Francis, London, pp 37–62Google Scholar
  74. 74.
    Sanchez C (2009) Biotechnol Adv 27:185–194Google Scholar
  75. 75.
    Vicuna R (2000) Mol Biotechnol 14:173–176Google Scholar
  76. 76.
    Kirk K, Cullen D (1998) Enzymology and molecular genetics of wood degradation by white rot fungi. In: Young RA, Akhtar M (eds) Environmental friendly technologies for pulp and paper industry. Wiley, New York, pp 273–307Google Scholar
  77. 77.
    Perez J, Munoz-Dorado J, de la Rubia T, Martinez J (2002) Int Microbiol: The Official Journal of the Spanish Society for Microbiology 5:53–63Google Scholar
  78. 78.
    Joana SA, Speulveda M, Carolina AC, Isabel PF, Alirio ER, Naceur B, Barrerio M (2012) Polym Degrad Stab 97:2069–2076Google Scholar
  79. 79.
    Leonowicz A, Cho NS, Luterek J, Wilkolazka A, Wojtas-Wasilewska M, Matuszewska A, Hofrichter M, Wesenberg D, Rogalski J (2001) J Basic Microbiol 41:185–227Google Scholar
  80. 80.
    Maheshwari R, Bharadwaj G, Bhat MK (2000) Microbiol Mol Biol Rev 64:461–488Google Scholar
  81. 81.
    Majumdar S, Lukk T, Jose SO, Stefan B, Nair SK, Cronan JE, Gert JA (2014) Biochemistry 53(24):4047–4058Google Scholar
  82. 82.
    Picart P, Wiermans L, Sanchez MP, Grande PM, Schallmey A, Maria PD (2016) ACS Sustain Chem Eng 4:651–655Google Scholar
  83. 83.
    Fallico B, Arena E, Zappala M (2008) J Food Sci 73:C625–C631Google Scholar
  84. 84.
    Gutierrez T, Ingram LO, Preston JF (2006) J Biotechnol 121:154–164Google Scholar
  85. 85.
    Nichols NN, Mertens JA (2008) FEMS Microbiol Lett 284:52–57Google Scholar
  86. 86.
    Belay N, Boopathy R, Voskuilen G (1997) Appl Environ Microbiol 63:2092–2094Google Scholar
  87. 87.
    Boopathy R, Daniels L (1991) Curr Microbiol 23(6):327–332Google Scholar
  88. 88.
    Boopathy R (1996) Appl Environ Microbiol 62(9):3483–3485Google Scholar
  89. 89.
    Boopathy R (2009) Int Biodeterior Biodegradation 63:1070–1072Google Scholar
  90. 90.
    Wierckx N, Koopman F, Bandounas L, de Winde JH, Ruijssenaars HJ (2010) Microbiol Biotechnol 3:336–343Google Scholar
  91. 91.
    Yu J, Stahl H (2008) Bioresour Technol 99:8042–8048Google Scholar
  92. 92.
    Trifonova R, Postma J, Ketelaars JJ, Van Elsas JD (2008) Microb Ecol 56(3):561–571Google Scholar
  93. 93.
    Zhang J, Zhu Z, Wang X, Wang N, Wang W, Bao J (2010) Biotechnol Biofuels 3:26–40Google Scholar
  94. 94.
    Zhang D, Ong YL, Li Z, Wu JC (2013) Biochem Eng J 72:77–82Google Scholar
  95. 95.
    Nichols NN, Dien BS, Guisado GM, Lopez MJ (2005) Biotechnol Appl Biochem 121–124:379–390Google Scholar
  96. 96.
    Okuda N, Soneura M, Ninomiya K, Katakura Y, Shioya S (2008) J Biosci Bioeng 106:128–133Google Scholar
  97. 97.
    Guigo N, Mija A, Zavaglia R, Vincent L, Sbirrazzuoli N (2009) Polym Degrad Stab 94:908–913Google Scholar
  98. 98.
    Kumar R, Rashmi D (2018) World J Microbiol Biotechnol 34:2Google Scholar
  99. 99.
    Wierckx N, Koopman F, Ruijssenaars HJ, de Winde JH (2011) Appl Microbiol Biotechnol 92:1095–1105Google Scholar
  100. 100.
    Gurusamy A, Rajesh BS, Mahesh K, Thanapalan M (2000) Bioprocess Eng 22(6):493–501Google Scholar
  101. 101.
    Kumar A, Kumar S, Kumar S (2005) Biochem Eng J 22:151–159Google Scholar
  102. 102.
    Neumann G, Teras R, Monson L, Kivisaar M, Schauer F, Heipieper HJ (2004) Appl Environ Microbiol 70:1907–1912Google Scholar
  103. 103.
    Banerjee A, Ghoshal AK (2010) Bioresour Technol 101:5501–5507Google Scholar
  104. 104.
    Van der Meer JR, de Vos WM, Harayama S, Zehnder AJ (1992) Microbiol Rev 56:677–694Google Scholar
  105. 105.
    Harayama S, Rekik M (1989) J Biol Chem 264:15328–15333Google Scholar
  106. 106.
    Ornston LN, Stanier RY (1966) J Biol Chem 241:3776–3786Google Scholar
  107. 107.
    Bajaj M, Gallert C, Winter J (2009) Biochem Eng J 46:205–209Google Scholar
  108. 108.
    Monteiro AA, Boaventura RA, Rodrigues AE (2000) Biochem Eng J 6:45–49Google Scholar
  109. 109.
    Asina F, Brzonova I, Voeller K, Kozliak E, Kubátová A, Yao B, Ji Y (2016) Bioresour Technol 220:414–424Google Scholar
  110. 110.
    Brzonova I, Kozliak E, Kubátová A, Chebeir M, Qin W, Christopher L, Ji Y (2014) Bioresour Technol 173:352–360Google Scholar
  111. 111.
    Agarry S, Solomon BK, Layokun S (2008) Afr J Biotechnol 7(14):2409–2416Google Scholar
  112. 112.
    Wu J, Xiao Y, Yu H (2005) Bioresour Technol 96:1357–1363Google Scholar
  113. 113.
    Yang YS, Zhou JT, Lu H, Yuan YL, Zhao LH (2012) Environ Toxicol 33:2603–2609Google Scholar
  114. 114.
    Irin SC, Begila DS (2014) Int J Chem Stud 2(4):46–54Google Scholar
  115. 115.
    Loredo-Trevino A, Gutiérrez-Sánchez G, Rodriguez R, Aguilar C (2011) J Polymer Environ 20(1):258–265Google Scholar
  116. 116.
    Ignat L, Ignat M, Ciobanu C, Doroftei F, Popa VI (2011) Ind Crops Prod 34:1017–1028Google Scholar
  117. 117.
    Shweta DK (2013) Int J Curr Microbiol App Sci 2(6):64–69Google Scholar
  118. 118.
    Atagana HI, Haynes RJ, Wallis FM (2003) Biodegradation 14:297–307Google Scholar
  119. 119.
    Chaillan F, Chaîneau CH, Point V, Saliot A, Oudot J (2006) Environ Pollut 144:255–265Google Scholar
  120. 120.
    Beshay U, Abd-El-Haleem D, Moawad H, Zaki S (2002) Biotechnol Lett 24:1295–1297Google Scholar
  121. 121.
    Paca J, Komárková E, Prell A, Stiborová M, Sobotka M (2002) Folia Microbiol 47:701–707Google Scholar
  122. 122.
    Paca J, Martius GGS (1996) Clean Soil Air Water 24:127–131Google Scholar
  123. 123.
    Haldane JBS (1965) Enzymes. MIT Press, Cambridge, p 84Google Scholar
  124. 124.
    Aiba S, Shoda M, Nagalani (1968) Biotechnol Bioeng 10:845–864Google Scholar
  125. 125.
    Edwards VH (1970) Biotechnol Bioeng 12:679–712Google Scholar
  126. 126.
    Allsop PJ, Chisti Y, Moo-Young M, Sullivan GR (1993) Biotechnol Bioeng 41:572–580Google Scholar
  127. 127.
    Szetela RW, Winnicki TZ (1981) Biotechnol Bioeng 23:1485–1490Google Scholar
  128. 128.
    Hill GA, Robinson CW (1975) Biotechnol Bioeng 17:1599–1615Google Scholar
  129. 129.
    Yan J, Jianping W, Hongmei L, Suliang Y, Zongding H (2005) Biochem Eng J 24:243–247Google Scholar
  130. 130.
    Dikshitulu S, Baltzis BC, Lewandowski GA, Pavlou S (1993) Biotechnol Bioeng 42:643–656Google Scholar
  131. 131.
    Saravanan P, Pakshirajan K, Saha P (2008) Bioresour Technol 99:205–209Google Scholar
  132. 132.
    Hao OJ, Kim MH, Seagren EA, Kim H (2002) Chemosphere 46:797–807Google Scholar
  133. 133.
    Kumaran P, Paruchuri YL (1997) Water Res 31:11–22Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyCentral University of South BiharGayaIndia

Personalised recommendations