Advertisement

Journal of Polymers and the Environment

, Volume 27, Issue 5, pp 942–955 | Cite as

Effect of Accelerated Weathering on Physico-Mechanical Properties of Polylactide Bio-Composites

  • Moyeenuddin Ahmad SawpanEmail author
  • Muhammad Remanul Islam
  • Mohammad Dalour Hossain Beg
  • Kim Pickering
Original Paper
  • 79 Downloads

Abstract

In this work, injection moulded hemp fibre reinforced polylactide bio-composites of different fibre contents (0, 10, 20 and 30 wt%) were subjected to accelerated weathering of 12 h cyclic exposures of UV-light at 60 °C, water spray and condensation at 50 °C for 8, 16, 32, 48 and 64 cycles to study the changes in properties such as crystallinity, tensile, flexural, plane-strain fracture toughness (\({K_{Ic}}\)) and strain energy release rate (\({G_{Ic}}\)). The crystallinity of neat polylactide (PLA) was found to increase up to 50.6% after 64 cycles, whereas the crystallinity of composites of different fibre contents was found to increase in the range of 30.6 to 34.5% for 8 to 64 cycles. The overall mechanical properties (tensile, flexural, \({K_{Ic}}\) and \({G_{Ic}}\)) of the composites decreased as the number of cycles increased from 8 to 64. The crystallinity and the residual tensile strength, tensile modulus, tensile strain, \({K_{Ic}}\) and \({G_{Ic}}\) of the composites of 20 wt% fibres were found to be the highest after 64 cycles. In contrast, the residual flexural strength and flexural modulus of the composites of 30 wt% fibres were found to be the maximum after 64 cycles. Absorption of water, destruction of fibre integrity, degradation of PLA matrix, formation of cracks and pores were found to be the main causes of reduction in the mechanical properties of PLA bio-composites.

Keywords

Accelerated weathering Bio-composite Crystallinity Hemp fibre Polylactide 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

References

  1. 1.
    Madhavan Nampoothiri K, Nair NR, John RP (2010) Bioresour Technol 101:8493–8501CrossRefGoogle Scholar
  2. 2.
    Ho K-LG, Pometto AL, Hinz PN (1999) J Environ Polym Degrad 7:83–92CrossRefGoogle Scholar
  3. 3.
    Li S, McCarthy S (1999) Macromolecules 32:4454–4456CrossRefGoogle Scholar
  4. 4.
    Carrasco F, Pagès P, Gámez-Pérez J, Santana OO, Maspoch ML (2010) Polym Degrad Stabil 95:116–125CrossRefGoogle Scholar
  5. 5.
    Lee SH, Kim IY, Song WS (2014) Macromol Res 22:657–663CrossRefGoogle Scholar
  6. 6.
    Mitchell MK, Hirt DE (2015) Polym Eng Sci 55:1652–1660CrossRefGoogle Scholar
  7. 7.
    Xu L, Crawford K, Gorman CB (2011) Macromolecules 44:4777–4782CrossRefGoogle Scholar
  8. 8.
    Ndazi BS, Karlsson S (2011) eXPRESS Polym Lett 5:119–131CrossRefGoogle Scholar
  9. 9.
    Owen KL (2013) Control of microstructure in poly-lactic acid and the effect on biodegradation. University of Birmingham, BirminghamGoogle Scholar
  10. 10.
    Bax B, Müssig J (2008) Compos Sci Technol 68:1601–1607CrossRefGoogle Scholar
  11. 11.
    Plackett D, Løgstrup Andersen T, Batsberg Pedersen W, Nielsen L (2003) Compos Sci Technol 63:1287–1296CrossRefGoogle Scholar
  12. 12.
    Lee S-H, Ohkita T, Kitagawa K (2004) Holzforschung 58:529–536Google Scholar
  13. 13.
    Mathew AP, Oksman K, Sain M (2005) J Appl Polym Sci 97:2014–2025CrossRefGoogle Scholar
  14. 14.
    Wong S, Shanks R (2008) Compos Interfaces 15:131–145CrossRefGoogle Scholar
  15. 15.
    Sawpan MA, Pickering KL, Fernyhough A (2011) Composites Part A 42:310–319CrossRefGoogle Scholar
  16. 16.
    Pozo Morales A, Güemes A, Fernandez-Lopez A, Carcelen Valero V, De La Rosa Llano S (2017) Materials 10:1286CrossRefGoogle Scholar
  17. 17.
    Gunti R, Prasad AVR, Gupta AVSSKS (2018) Polym Compos 39:1125–1136CrossRefGoogle Scholar
  18. 18.
    Asaithambi B, Ganesan G, Ananda Kumar S (2014) Fibers Polym 15:847–854CrossRefGoogle Scholar
  19. 19.
    Spiridon I, Darie RN, Kangas H (2016) Composites Part B 92:19–27CrossRefGoogle Scholar
  20. 20.
    Graupner N, Müssig J (2017) Int J Polym Sci 2017:1–10CrossRefGoogle Scholar
  21. 21.
    Cichorek M, Piorkowska E, Krasnikova N (2017) J Polym Environ 25:74–80CrossRefGoogle Scholar
  22. 22.
    Wang F, Zhou S, Yang M, Chen Z, Ran S (2018) Polymers 10:401CrossRefGoogle Scholar
  23. 23.
    Shahruddin M, Muhamad F, Zaleha M (2017) IOP Conf Ser Mater Sci Eng 165:012021CrossRefGoogle Scholar
  24. 24.
    Islam MS, Pickering KL, Foreman NJ (2010) Polym Degrad Stabil 95:59–65CrossRefGoogle Scholar
  25. 25.
    Azwa ZN, Yousif BF, Manalo AC, Karunasena W (2013) Mater Des 47:424–442CrossRefGoogle Scholar
  26. 26.
    Siakeng R, Jawaid M, Ariffin H, Sapuan SM (2018) IOP Conf Ser Mater Sci Eng 290:012031CrossRefGoogle Scholar
  27. 27.
    Junpeng D, Hongwu W, Wuchang F, Mingyang H (2018) Polym Compos 39:E188–E199CrossRefGoogle Scholar
  28. 28.
    Baghaei B, Skrifvars M (2016) Composites Part A 81:139–144CrossRefGoogle Scholar
  29. 29.
    Fang W, Mengqing Y, Shujue Z, Siyan R, Junqian Z (2018) J Appl Polym Sci 135:46148CrossRefGoogle Scholar
  30. 30.
    Baghaei B, Skrifvars M, Berglin L (2013) Composites Part A 50:93–101CrossRefGoogle Scholar
  31. 31.
    Yu T, Ren J, Li S, Yuan H, Li Y (2010) Composites Part A 41:499–505CrossRefGoogle Scholar
  32. 32.
    van den Oever MJA, Beck B, Müssig J (2010) Composites Part A 41:1628–1635CrossRefGoogle Scholar
  33. 33.
    Baghaei B, Skrifvars M, Salehi M, Bashir T, Rissanen M et al (2014) Composites Part A 61:1–12CrossRefGoogle Scholar
  34. 34.
    Lee B-H, Kim H-S, Lee S, Kim H-J, Dorgan JR (2009) Compos Sci Technol 69:2573–2579CrossRefGoogle Scholar
  35. 35.
    Le Duigou A, Davies P, Baley C (2009) Polym Degrad Stabil 94:1151–1162CrossRefGoogle Scholar
  36. 36.
    Siengchin S, Dangtungee R (2013) J Thermoplas Compos Mater 26:1424–1440CrossRefGoogle Scholar
  37. 37.
    Gil-Castell O, Badia JD, Kittikorn T, Strömberg E, Martínez-Felipe A et al (2014) Polym Degrad Stabil 108:212–222CrossRefGoogle Scholar
  38. 38.
    Hu R-H, Sun M-y, Lim J-K (2010) Mater Des 31:3167–3173CrossRefGoogle Scholar
  39. 39.
    Kaynak C, Dogu B (2016) Int Polym Proc 31:410–422CrossRefGoogle Scholar
  40. 40.
    Mehta G, Mohanty AK, Drzal LT, Kamdem DP, Misra M (2006) J Polym Environ 14:359–368CrossRefGoogle Scholar
  41. 41.
    Beg MDH, Pickering KL (2008) Polym Degrad Stabil 93:1939–1946CrossRefGoogle Scholar
  42. 42.
    Pickering KL, Sawpan MA, Jayaraman J, Fernyhough A (2011) Composites Part A 42:1148–1156CrossRefGoogle Scholar
  43. 43.
    Mathew AP, Kristiina O, Mohini S (2006) J Appl Polym Sci 101:300–310CrossRefGoogle Scholar
  44. 44.
    Paul MA, Delcourt C, Alexandre M, Degée P, Monteverde F et al (2005) Polym Degrad Stabil 87:535–542CrossRefGoogle Scholar
  45. 45.
    Adam F, Sushant A, Rakesh G (2016) J Appl Polym Sci 133:44166Google Scholar
  46. 46.
    Felfel RM, Hossain KMZ, Parsons AJ, Rudd CD, Ahmed I (2015) J Mater Sci 50:3942–3955CrossRefGoogle Scholar
  47. 47.
    Gonzalez MF, Ruseckaite RA, Cuadrado TR (1999) J Appl Polym Sci 71:1223–1230CrossRefGoogle Scholar
  48. 48.
    Sawpan MA, Pickering KL, Fernyhough A (2011) Composites Part A 42:888–895CrossRefGoogle Scholar
  49. 49.
    Mwaikambo LY, Ansell MP (2006) J Mater Sci 41:2483–2496CrossRefGoogle Scholar
  50. 50.
    Moyeenuddin AS (2016) Polym Compos 37:3181–3190CrossRefGoogle Scholar
  51. 51.
    Tabi T, Sajo IE, Szabo F, Luyt AS, Kovacs JG (2010) eXPRESS Polym Lett 4:659–668CrossRefGoogle Scholar
  52. 52.
    Zhang J, Tashiro K, Tsuji H, Domb AJ (2008) Macromolecules 41:1352–1357CrossRefGoogle Scholar
  53. 53.
    Ass BAP, Belgacem MN, Frollini E (2006) Carbohydr Polym 63:19–29CrossRefGoogle Scholar
  54. 54.
    Abbate dSF, Cristina VIG, Inês BTM (2017) Polym Eng Sci 57:464–472CrossRefGoogle Scholar
  55. 55.
    Gardette M, Thérias S, Gardette J-L, Murariu M, Dubois P (2011) Polym Degrad Stabil 96:616–623CrossRefGoogle Scholar
  56. 56.
    Bocchini S, Frache A (2013) eXPRESS Polym Lett 7:431–442CrossRefGoogle Scholar
  57. 57.
    Elsawy MA, Kim K-H, Park J-W, Deep A (2017) Renew Sust Energ Rev 79:1346–1352CrossRefGoogle Scholar
  58. 58.
    Hakkarainen M, Albertsson A-C, Karlsson S (1996) Polym Degrad Stabil 52:283–291CrossRefGoogle Scholar
  59. 59.
    Renouf-Glauser AC, Rose J, Farrar DF, Cameron RE (2005) Biomaterials 26:5771–5782CrossRefGoogle Scholar
  60. 60.
    Chaochanchaikul K, Jayaraman K, Rosarpitak V, Sombatsompop PDN (2011) Bioresources 7:38–55Google Scholar
  61. 61.
    Santos RB, Hart P, Jameel H, Chang H-m (2013) Bioresources 8:1478–1507Google Scholar
  62. 62.
    Delabarde C, Plummer CJG, Bourban P-E, Månson J-AE (2011) Polym Degrad Stabil 96:595–607CrossRefGoogle Scholar
  63. 63.
    Guralp O, Sebnem K (2009) J Appl Polym Sci 114:2481–2487CrossRefGoogle Scholar
  64. 64.
    Sair S, Oushabi A, Kammouni A, Tanane O, Abboud Y et al (2018) Case Stud Constr Mater 8:203–212CrossRefGoogle Scholar
  65. 65.
    Thwe MM, Liao K (2003) Compos Sci Technol 63:375–387CrossRefGoogle Scholar
  66. 66.
    Sawpan MA, Pickering KL, Fernyhough A (2012) Composites Part A 43:519–526CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Composite Materials ResearchPultron Composites LimitedGisborneNew Zealand
  2. 2.Section of Chemical Engineering Technology, Malaysian Institute of Chemical and Bioengineering TechnologyUniversity of Kuala LumpurMelakaMalaysia
  3. 3.Faculty of Chemical and Natural Resources EngineeringUniversiti Malaysia PahangPahangMalaysia
  4. 4.The University of WaikatoHamiltonNew Zealand

Personalised recommendations