Advertisement

Journal of Polymers and the Environment

, Volume 27, Issue 5, pp 917–928 | Cite as

Improvement of the Production and Characterisation of Polyhydroxyalkanoate by Bacillus endophyticus Using Inexpensive Carbon Feedstock

  • M. Geethu
  • R. Vrundha
  • S. Raja
  • H. Raghu Chandrashekar
  • M. S. DivyashreeEmail author
Original paper
  • 72 Downloads

Abstract

The study aimed at the production and characterization of biopolymer polyhydroxyalkanoate (PHA) by Bacillus endophyticus. The usage of refined (sucrose 2–4%) and inexpensive unrefined (sugar cane molasses 2–4%) carbon source was evaluated by varying the media components via shake flask method and batch cultivation in bioreactor. The optimal PHA production of 10.7 g/L of PHA from 15.37 g/L of cell density was obtained using 4% sugarcane molasses (SCM) at 250 rpm using optimized medium obtained through statistical experimental design. Batch cultivation with increased agitation rate and addition of feeding nutrients provided by SCM significantly lead to enhanced PHA production by the test organism by increasing the overall cell density. According to the statistical model, the increase in the sugar concentration (> 4%) by SCM had a negative effect on PHA production. Characterization by FTIR and 1H NMR was performed to confirm the biopolymer that has been produced by Bacillus spp.

Keywords

Polyhydroxyalkanoate (PHA) Bacillus endophyticus Sugarcane molasses (SCM) Shake flask cultivation Batch cultivation Optimisation 

Notes

Acknowledgements

Authors are grateful to The Department of Biotechnology (DBT), Government of India, for sponsoring the work (PR 18430/BIC/101/703/2016) and the Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, India; for providing the facilities to carry out the research work. The authors would also acknowledge Mrs. Subbalaxmi (Assistant Professor, Manipal Institute of Technology, Manipal) and Martin Hoiss for sharing their insight and expertise with us during the course of this research.

References

  1. 1.
    Sathya AV, Sivasubramanian A, Santhiagu C, Sebastian, Sivashankar R (2018) J Polym Environ 1:18Google Scholar
  2. 2.
    Sudesh K, Iwata T (2008) Clean Soil Air Water 36:5–6CrossRefGoogle Scholar
  3. 3.
    Rehm BH (2010) Nat Rev Microbiol 8:8CrossRefGoogle Scholar
  4. 4.
    Tripathi AD, Srivastava SK, Singh RP (2013) Biomass Bioenerg 55:243–250CrossRefGoogle Scholar
  5. 5.
    Gomaa EZ (2014) Braz Arch Biol Technol 57:1CrossRefGoogle Scholar
  6. 6.
    Sathiyanarayanan Saibaba G, Kiran GS, Selvin J (2013) Int J Biol Macromol 59:253–261CrossRefGoogle Scholar
  7. 7.
    Davis R, Kataria R, Cerrone F, Woods T, Kenny S, O’Donovan A, Guzik M, Shaikh H, Duane G, Gupta VK (2013) Bioresour Technol 150:202–209CrossRefGoogle Scholar
  8. 8.
    Tanamool V, Imai T, Danvirutai P, Kaewkannetra P (2011) J Life Sci 5:12Google Scholar
  9. 9.
    Moreno P, Yanez C, Cardozo NSM, Escalante H, Combariza MY, Guzman C (2015) New Biotechnol 32:6CrossRefGoogle Scholar
  10. 10.
    Ray S, Prajapati V, Patel K, Trivedi U (2016) Int J Biol Macromol 86:741–749CrossRefGoogle Scholar
  11. 11.
    Venkata Mohan S, Venkateswar R (2013) Bioresour Technol 128:526–532CrossRefGoogle Scholar
  12. 12.
    Aramvash A, Shahabi ZA, Aghjeh SD, Ghafari M (2015) Int J Environ Sci Technol 12:7CrossRefGoogle Scholar
  13. 13.
    Reddy C, Ghai R, Kalia VC (2003) Bioresour Technol 87:2CrossRefGoogle Scholar
  14. 14.
    Koller M, Maršálek L, de Sousa Dias MM, Braunegg G (2017) New Biotechnol 37:24–38CrossRefGoogle Scholar
  15. 15.
    Morgan-Sagastume F, Hjort M, Cirne D, Gérardin F, Lacroix S, Gaval G, Karabegovic L, Alexandersson T, Johansson P, Karlsson A (2015) Bioresour Technol 181:78–89CrossRefGoogle Scholar
  16. 16.
    Akaraonye E, Moreno C, Knowles JC, Keshavarz T, Roy I (2012) Biotechnol J 7:2CrossRefGoogle Scholar
  17. 17.
    Nair AM, Annamalai K, Kannan SK, Kuppusamy S (2013) Adv Biotechnol Res 4(4):527Google Scholar
  18. 18.
    Esteban J, Ladero M (2018) Int J Food Sci Tech 53:5CrossRefGoogle Scholar
  19. 19.
    Koller M (2018) Molecules 23:2CrossRefGoogle Scholar
  20. 20.
    Sukan A, Roy I, Keshavarz T (2014) J Biomater Nanobiotechnol 5:04CrossRefGoogle Scholar
  21. 21.
    Miller GL (1959) Anal Chem 31:3CrossRefGoogle Scholar
  22. 22.
    Liu YP, Zheng P, Sun ZH, Ni Y, Dong JJ, Zhu LL (2008) Bioresour Technol 99:6Google Scholar
  23. 23.
    Shamala T, Divyashree M, Davis R, Kumari KL, Vijayendra S, Raj B (2009) Indian J Microbiol 49:3CrossRefGoogle Scholar
  24. 24.
    Slepecky RA, Law JH (1960) Anal Chem 32:12CrossRefGoogle Scholar
  25. 25.
    Lakshman K, Shamala TR (2006) Enzyme Microb Technol 39:7CrossRefGoogle Scholar
  26. 26.
    Divyashree M, Shamala T (2010) Indian J Microbiol 50:1CrossRefGoogle Scholar
  27. 27.
    Kunasundari B, Sudesh K (2011) Express Polym Lett 5:7CrossRefGoogle Scholar
  28. 28.
    Curtin LV (1983) Molasses general considerations. In: Molasses in animal nutrition. National Feed Ingredients Assoc., West Des Moines, IAGoogle Scholar
  29. 29.
    Wu Q, Huang H, Hu G, Chen J, Ho K, Chen GQ (2001) Antonie Van Leeuwenhoek 80:2CrossRefGoogle Scholar
  30. 30.
    Gouda MK, Swellam AE, Omar SH (2001) Microbiol Res 156:3CrossRefGoogle Scholar
  31. 31.
    Chaijamrus S, Udpuay N (2008) Agric Eng Int CIGR J XGoogle Scholar
  32. 32.
    Nair AM, Annamalai K, Kannan SK, Kuppusamy S (2014) Malaya J Biosci 1:8–12Google Scholar
  33. 33.
    Tsuge T (2002) J Biosci Bioeng 94:6CrossRefGoogle Scholar
  34. 34.
    Khanna S, Srivastava AK (2005) Process Biochem 40:6Google Scholar
  35. 35.
    Choi JI, Lee SY (1999) Biotechnol Bioeng 62:5CrossRefGoogle Scholar
  36. 36.
    Liu Y, Huang S, Zhang Y, Xu F (2014) J Environ Sci 26:7Google Scholar
  37. 37.
    Lefebvre G, Rocher M, Braunegg G (1997) Appl Environ Microbiol 63:3Google Scholar
  38. 38.
    Obruca S, Marova I, Melusova S, Mravcova L (2011) Ann Microbiol 61:4CrossRefGoogle Scholar
  39. 39.
    Huang TY, Duan KJ, Huang SY, Chen CW (2006) J Ind Microbiol Biotechnol 33:8CrossRefGoogle Scholar
  40. 40.
    Bosco F, Chiampo F (2010) J Biosci Bioeng 109:4CrossRefGoogle Scholar
  41. 41.
    Albuquerque M, Torres C, Reis M (2010) Water Res 44:11CrossRefGoogle Scholar
  42. 42.
    Maheshwari N, Kumar M, Thakur IS, Srivastava S (2018) Bioresour Technol.  https://doi.org/10.1016/j.biortech.2018.01.002 Google Scholar
  43. 43.
    Kim M, Day DF (2011) J Ind Microbiol Biotechnol 38:7Google Scholar
  44. 44.
    Goh YS, Tan IKP (2012) Microbiol Res 167:4CrossRefGoogle Scholar
  45. 45.
    Kulpreecha S, Boonruangthavorn A, Meksiriporn B, Thongchul N (2009) J Biosci Bioeng 107:3CrossRefGoogle Scholar
  46. 46.
    Dai Y, Lambert L, Yuan Z, Keller J (2008) J Biotechnol 134:1–2CrossRefGoogle Scholar
  47. 47.
    White J (1954) Yeast technology. Chapman and Hall Ltd, LondonGoogle Scholar
  48. 48.
    Paterson-Beedle M, Kennedy J, Melo F, Lloyd L, Medeiros V (2000) Carbohydr Polym 42:4CrossRefGoogle Scholar
  49. 49.
    Calabia BP, Tokiwa Y (2007) Biotechnol Lett 29:9CrossRefGoogle Scholar
  50. 50.
    El-Gendy NS, Madian HR, Amr SSA (2013) Int J Microbiol 2013:815631CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biotechnology, Manipal Institute of TechnologyManipal Academy of Higher EducationManipalIndia
  2. 2.Department of Chemical Engineering, Manipal Institute of TechnologyManipal Academy of Higher EducationManipalIndia
  3. 3.Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical SciencesManipal Academy of Higher EducationManipalIndia

Personalised recommendations