Journal of Polymers and the Environment

, Volume 27, Issue 5, pp 1054–1064 | Cite as

Adsorption of Acidol Red 2BE-NW Dye from Aqueous Solutions on Carboxymethyl Cellulose/Organo-Bentonite Composite: Characterization, Kinetic and Thermodynamic Studies

  • Anissa Leshaf
  • Hocine Ziani Cherif
  • Kamal BenmansourEmail author
Original paper


The combination of biopolymers and clay minerals to form new composite materials offers new horizons and promises to reveal a great potential in the efficient removal of hazardous pollutants from wastewater. The adsorptive removal of Acidol Red 2BE-NW (AR42) with carboxymethyl cellulose/organo-bentonite (CMC/OBent) composite is investigated. The composite is characterized by means of Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), thermal gravimetric (TG) analysis, Brunauer–Emmett–Teller (BET) specific surface area and Barret–Johner–Halenda (BJH) pore size distribution analyses. The adsorption of AR42 anionic dye from aqueous solution onto the CMC/OBent composites is assessed by varying parameters such as the mass ratio of CMC to organo-bentonite, the pH value of the dye solution, the temperature, the contact time and the initial dye concentration. The organic modification of bentonite stimulates the intercalation of CMC molecules into the interlayer space of organo-bentonite. An intermolecular as well as an intramolecular linkage (interaction) among CMC molecules and organo-bentonite platelets is observed as evidenced by the FT-IR analysis. Dye equilibrium uptake is reached within 60 min, yielding a maximum dye sorption of 91.14% at a pH of 5.2, with an adsorption capacity of 29.16 mg/g at 25 °C. Adsorption kinetics of AR42 onto the CMC/OBent composite is best described by a pseudo second-order mechanism, while its adsorption isotherm fits well into the Freundlich equation. The potential for AR42 dye removal with CMC/OBent composite is discussed.


Carboxymethyl cellulose Organic bentonite Inorganic organic composite Adsorption Acidol Red 2BE-NW dye 



  1. 1.
    Yilmaz E, Memon S, Yilmaz M (2010) J Hazard Mater 174:592–597CrossRefGoogle Scholar
  2. 2.
    Zollinger H (1987) Color chemistry: synthesis, properties of organic dyes and pigments. VCH Publishers, New YorkGoogle Scholar
  3. 3.
    Fungaro DA, Bruno M (2009) Quim Nova 32:955–959CrossRefGoogle Scholar
  4. 4.
    Idel Aouad R, Valiente M, Gutierrez Bouzan C, Vilaseca M, Yaacoubi A, Tanouti B, Lopez Mesas M (2015) J Anal Methods Chem 2015:945489–945496CrossRefGoogle Scholar
  5. 5.
    Srinivas G, Sekar S, Saravanan S, Renga Narayanan S (2012) Desalination Water Treat 1:75–81CrossRefGoogle Scholar
  6. 6.
    Xu Y, Lebrun RE, Gallo PG, Blond P (1999) Sep Sci Technol 34:2501–2519CrossRefGoogle Scholar
  7. 7.
    Lucas M, Peres J (2006) Dyes Pigment 71:236–244CrossRefGoogle Scholar
  8. 8.
    Papic S (2004) Dyes Pigment 62:291–298CrossRefGoogle Scholar
  9. 9.
    Akhtar N, Iqbal M (2004) Eng Life Sci 4:171–178CrossRefGoogle Scholar
  10. 10.
    Kahraman HT (2017) Int J Biol Macromol 94:202–209CrossRefGoogle Scholar
  11. 11.
    Gutierrez LV, Escamilla-Silva EM (2009) Eng Life Sci 9:311–316CrossRefGoogle Scholar
  12. 12.
    Kittinaovarat S, Kansomwan P, Jiratumnukul N (2010) Appl Clay Sci 48:87–91CrossRefGoogle Scholar
  13. 13.
    Crini G (2006) Bioresour Technol 97:1061–1085CrossRefGoogle Scholar
  14. 14.
    Benmansour K, Kara Slimane S, Benosman A (2015) Desalination Water Treat 57:1–12CrossRefGoogle Scholar
  15. 15.
    Mittal A, Mittal J, Malviya A, Gupta VK (2010) J Colloid Interface Sci 344:497–507CrossRefGoogle Scholar
  16. 16.
    Mahmoodi NM, Salehi R, Arami M, Bahrami H (2011) Desalination 267:64–72CrossRefGoogle Scholar
  17. 17.
    Tan C, Li M, Lin YM, Lu X, Chen Z(2011) Desalination 266:56–62CrossRefGoogle Scholar
  18. 18.
    Zhou L, Meng X, Fu J, Yang Y, Yang P, Mi C (2014) Appl Surf Sci 292:735–741CrossRefGoogle Scholar
  19. 19.
    Nourmoradi H, Khiadani M, Nikaeen M (2013) J Chem 2013:1–10CrossRefGoogle Scholar
  20. 20.
    Ruan X, Liu H, Chang C, Fan X (2014) Int Biodeterior Biodegrad 95:212–218CrossRefGoogle Scholar
  21. 21.
    Singh N, Megharej M, Gates WP, Churchman J, Kookana RS (2004) Bull Eniviron Contam Toxicol 72:276–282CrossRefGoogle Scholar
  22. 22.
    Zhou Q, He H, Frost RL, Xi Y (2007) J Phys Chem C 111:7487–7493CrossRefGoogle Scholar
  23. 23.
    Bartelt-Hunt SL, Burns SE, Smith JA (2003) J Colloid Interface Sci 266:251–258CrossRefGoogle Scholar
  24. 24.
    Rhim JW, Ng P (2007) Crit Rev Food Sci Nutr 47:411–433CrossRefGoogle Scholar
  25. 25.
    Tang XZ, Kumar P, Alavi S, Sandeep KP (2012) Crit Rev Food Sci Nutr 52:426–442CrossRefGoogle Scholar
  26. 26.
    Park HM, Misra M, Drzal LT, Mohanty AK (2004) Biomacromol 5:2281–2288CrossRefGoogle Scholar
  27. 27.
    Melo J, Da Silva Filho EC, Santana S, Airoldi C (2009) Colloids Surf A 346:138–145CrossRefGoogle Scholar
  28. 28.
    Bao Y, Ma JZ, Li N (2011) Carbohydr Polym 84:76–82CrossRefGoogle Scholar
  29. 29.
    Wang WB, Wang AQ (2011) Carbohydr Polym 82:83–91CrossRefGoogle Scholar
  30. 30.
    Zhao Q, Qian JW, An QF, Gao CJ, Gui ZL, Jin HT (2009) J Membr Sci 333:68–78CrossRefGoogle Scholar
  31. 31.
    Liu P (2007) Appl Clay Sci 38:64–76CrossRefGoogle Scholar
  32. 32.
    Pavlidou S, Papaspyrides CD (2009) Prog Polym Sci 33:1119–1198CrossRefGoogle Scholar
  33. 33.
    Boyd SA, Shaobai S, Lee JF, Mortland MM (1988) Clays Clay Miner 36(2):125–130CrossRefGoogle Scholar
  34. 34.
    Zhu RL, Zhu LZ, Xu LH (2007) Coll Surf A 294:221–227CrossRefGoogle Scholar
  35. 35.
    Zhu RL, Zhu LZ, Zhu JX, Xu LH (2008) Sep Purif Technol 63(1):156–162CrossRefGoogle Scholar
  36. 36.
    Anirudhan TS, Ramachandran M (2007) Appl Clay Sci 35:276–281CrossRefGoogle Scholar
  37. 37.
    Lin SH, Juang R (2009) J Environ Manage 90:1336–1349CrossRefGoogle Scholar
  38. 38.
    Marsal A, Bautista E, Ribosa I, Pons R, Garcia MT (2009) Appl Clay Sci 44:151–155CrossRefGoogle Scholar
  39. 39.
    Wang CC, Juang LC, Lee CK, Hsu TC, Lee JF, Chao HP (2004) J Colloid Interf Sci 280:27–35CrossRefGoogle Scholar
  40. 40.
    Zhu J, Wang T, Zhu R, Ge F, Wei J, Yuan P, He H (2011) Appl Clay Sci 51:317–322CrossRefGoogle Scholar
  41. 41.
    Kang Q, Zhou WZ, Li Q, Gao BY, Fan JX, Shen DZ (2009) Appl Clay Sci 45:280–287CrossRefGoogle Scholar
  42. 42.
    Yue QY, Li Q, Gao BY, Wang Y (2007) Sep Purif Technol 54:279–290CrossRefGoogle Scholar
  43. 43.
    Yue QY, Li Q, Gao BY, Yuan AJ, Wang Y (2007) Appl Clay Sci 35:268–275CrossRefGoogle Scholar
  44. 44.
    Narayanan N, Gupta S, Gajbhiye VT, Manjaiah KM (2017) Chemosphere 173:502–511CrossRefGoogle Scholar
  45. 45.
    Kittinaovarat S, Kansomwan P, Jiratumnukul N (2010) ApplClay Sci 48:87–91Google Scholar
  46. 46.
    Ngah W, Ariff A, Hanafiah M (2010) Water Air Soil Pollut 206:225–236CrossRefGoogle Scholar
  47. 47.
    Benchabane A, Bekkour K (2004) Etude de l’effet d’un polymère anionique sur le comportement rhéologique de suspension de bentonite,39 ème colloque annuel du groupe français de Rhéologie, pp 201–205Google Scholar
  48. 48.
    Min-min W, Li W (2013) Water Sci Eng 6:272–282Google Scholar
  49. 49.
    Wang L, Wang A (2008) J Chem Eng 143:43–50CrossRefGoogle Scholar
  50. 50.
    Donnaperna L, Duclaux L, Gadioux R, Hirn MP, Merli C, Pietrelli L (2009) J Colloid Interface Sci 339:275–284CrossRefGoogle Scholar
  51. 51.
    Ozcan AS, Ozcan A (2004) J Colloid Interface Sci 280:44–54CrossRefGoogle Scholar
  52. 52.
    Wu Z, Ahn IS, Lee C, Kim J, Shul Y, Lee K (2004) Colloids Surf A 240:157–164CrossRefGoogle Scholar
  53. 53.
    Kapur M, Mondal MK (2013) J Chem Eng 218:138–146CrossRefGoogle Scholar
  54. 54.
    Öztürk A, Malkoc E (2014) Appl Surf Sci 299:105–115CrossRefGoogle Scholar
  55. 55.
    Rehman M, Munir M, Ashfaq M, Rashid N, Nazar MF, Danish M, Han J (2013) J Chem Eng 228:54–62CrossRefGoogle Scholar
  56. 56.
    Kumar AK, Mohan SV, Sarma PN (2009) J Hazard Mater 164:820–828CrossRefGoogle Scholar
  57. 57.
    Goel NK, Kumar V, Pahan S, Bhardwaj YK, Sabharwal S (2011) J Hazard Mater 193:17–26CrossRefGoogle Scholar
  58. 58.
    Lagergren S (1898) K Seven VetenskAkad Handl 24:1–39Google Scholar
  59. 59.
    Ho G (1999) Process Biochem 34:451–465CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Macromolecules Research Laboratory, Department of ChemistryTlemcen UniversityTlemcenAlgeria

Personalised recommendations