Advertisement

Influence of Plasticizers in Enzymatic Degradation and Water Resistance of Starch Foam Trays Obtained by Thermal Expansion

  • Fernanda StoffelEmail author
  • Eduarda Francine Weschenfelder
  • Marli Camassola
  • Luciani Tatsch Piemolini-Barreto
  • Mara Zeni
Original Paper
  • 20 Downloads

Abstract

Biodegradability and water resistance of cassava starch trays with different plasticizers [glycerol, sorbitol and polyvinyl alcohol (PVA)] were investigated. The degradability was tested by exposure at two amylolytic enzymes of microbial origin, one of them commercial (Termamyl®) and the other obtained in laboratory by the submerged cultivation of the fungus Penicilium echinulatum. The extent of degradation was analyzed by the percentage of weight loss and the concentration of released reducing sugars. The results showed that the packaging was sensitive to the action of the enzymes, because it was observed an increase in the concentration of reducing sugars in the first hours of reaction and percentages of weight loss near 90%. Water resistance was measured by solubility, contact angle and moisture sorption isotherms, with adjustment of the experimental data to mathematical models of Guggen-heim, Anderson de Boer (GAB), Brunauer–Emmet–Teller (BET), Oswin and Jaafar. Trays containing PVA addition showed less solubility, with greater contact angle and lower equilibrium moisture (in aw 0.98). The mathematical models of GAB and Oswin reproduced the best fit to the experimental data of the isotherms. The starch trays showed biodegradability independent of the material used as plasticizer.

Keywords

Amylolytic enzymes Sorption isotherms Packaging 

Notes

Acknowledgements

The authors thank the University of Caxias do Sul (UCS), FAPERGS and CNPQ for technical and financial support.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Debiagi F, Marim BM, Mali S (2015) J Polym Environ 23:269CrossRefGoogle Scholar
  2. 2.
    Bergel BF, Luz ML, Santana RMC (2017) Prog Org Coat 106:27CrossRefGoogle Scholar
  3. 3.
    Zhang C, Li F, Li J, Wang L, Xie Q, Xu J, Chen S (2017) Mater Des 120:222CrossRefGoogle Scholar
  4. 4.
    Abbasi A (2012) J Taiwan Inst Chem Eng 34:264CrossRefGoogle Scholar
  5. 5.
    Debiagi F, Ivano LRPFM, Nascimento PHA, Mali S (2012) BBR Biochem Biotechnol Rep 1:57Google Scholar
  6. 6.
    Stoffel F, Piemolini-Barreto L, Zeni M (2015) RRJoFST 4:43Google Scholar
  7. 7.
    Pornsuksomboon K, Holló BB, Szécsényi KM, Kaewtatip K (2016) Carbohydr Polym 136:107CrossRefGoogle Scholar
  8. 8.
    Lopez-Gil A, Rodrigues-Perez MA, De Saja JA, Bellucci FS, Ardanuy M (2014) Polímeros 24:36CrossRefGoogle Scholar
  9. 9.
    Isotton FS, Bernardo GL, Baldasso C, Rosa LM, Zeni M (2015) Ind Crop Prod 76:717CrossRefGoogle Scholar
  10. 10.
    Vercelheze AES, Fakhouri FM, Dall’Antônia LH, Urbano A, Youssef EY, Yamashita F, Mali S (2012) Carbohydr Polym 87:1302CrossRefGoogle Scholar
  11. 11.
    Kaewtatip K, Tanrattanakul V, Phetrar W (2013) Appl Clay Sci 80–81:413CrossRefGoogle Scholar
  12. 12.
    Uslu M, Polat S (2012) Carbohydr Polym 87:1994CrossRefGoogle Scholar
  13. 13.
    Polat S, Uslu M, Aygün A, Certel M (2013) J Food Eng 116:267CrossRefGoogle Scholar
  14. 14.
    Xu YX, Dzenis Y, Hanna MA (2005) Ind Crop Prod 21:361CrossRefGoogle Scholar
  15. 15.
    Primarini D, Ohta Y (2000) Starch 52:28CrossRefGoogle Scholar
  16. 16.
    Ishiaku US, Pang KW, Lee WS, Ishak ZAM (2002) Eur Polym J 38:393CrossRefGoogle Scholar
  17. 17.
    Soares IA, Flores AC, Zanettin L, Pin HK, Mendonça MM, Barcelos RP, Trevisol LR, Carvalho RD, Schauren D, Rocha CLMSC, Baroni S (2010) Ciênc Tecnol Aliment 30:700CrossRefGoogle Scholar
  18. 18.
    Camassola M, Bittencourt LR, Sehnem NT, Andreaus J, Dillon AJP (2004) Biocatal Biotransform 22:391CrossRefGoogle Scholar
  19. 19.
    Schneider WDH, Gonçalves TA, Uchima CA, Couger MB, Prade R, Squina FM, Dillon AJP, Camassola M (2016) Biotechnol Biofuels 9:66CrossRefGoogle Scholar
  20. 20.
    Schneider WDH, Reis L, Camassola M, Dillon AJP (2014) BioMed Res Int.  https://doi.org/10.1155/2014/254863 Google Scholar
  21. 21.
    Araujo MA, Cunha AM, Mota M (2004) Biomaterials 25:2687CrossRefGoogle Scholar
  22. 22.
    Preechawong D, Peesan M, Rujiravanit R, Supaphol P (2004) Macromol Symp 216:217CrossRefGoogle Scholar
  23. 23.
    Damodaran S, Parkin K, Fennema OR (2010) Química de alimentos de Fennema. Artmed, Porto AlegreGoogle Scholar
  24. 24.
    Andrade PRD, Lemus MR, Pérez CCE (2011) Vitae-Columbia 18:325Google Scholar
  25. 25.
    Mello LRPF, Mali S (2014) Ind Crop Prod 55:187CrossRefGoogle Scholar
  26. 26.
    Sehnem NT, De Bittencourt LR, Camassola M, Dillon AJP (2006) Appl Microbiol Biotechnol 72:163CrossRefGoogle Scholar
  27. 27.
    Miller GL (1959) Anal Biochem 31:426Google Scholar
  28. 28.
    Galdeano MC, Wilhelm AE, Grossmann MVE, Mali S (2013) Polímeros 24:80CrossRefGoogle Scholar
  29. 29.
    Silva WA, Pereira J, Carvalho CWP, Ferrua FQ (2007) Ciênc Agrotec 31:154CrossRefGoogle Scholar
  30. 30.
    Toledo RT (1999) Fundaments of food process engineering. Aspen Publication, GaithersburgCrossRefGoogle Scholar
  31. 31.
    Tiwari KL, Jadhav SK, Fatima A (2007) GJBB 2:21Google Scholar
  32. 32.
    Sindhu R, Supranha GN, Shashidhar S (2009) Afr J Microbiol Res 3:498Google Scholar
  33. 33.
    Bernardes AV, Martins ES, Da Mata JF, Ferreira OE (2014) Rev Bras Tecnol Agroind 08:1439Google Scholar
  34. 34.
    Mali S, Grossmann MVE, García MA, Martino MM, Zaritzky NE (2005) Food Hydrocoll 19:157CrossRefGoogle Scholar
  35. 35.
    Mali S, Grossmann MVE, Yamashita F (2010) Semin Ciênc Agrar 31:137CrossRefGoogle Scholar
  36. 36.
    Debiagi F, Kobayashi RKT, Nakazato G, Panagio LA, Mali S (2014) Ind Crop Prod 52:664CrossRefGoogle Scholar
  37. 37.
    Marcon MJA, Avancini SRP, Amante ER (2007) Propriedades químicas e tecnológicas do amido de mandioca e do polvilho azedo. UFSC, FlorianópolisGoogle Scholar
  38. 38.
    Liu H, Yu L, Dean K, Simon G, Petinakis E, Chen L (2009) Carbohyd Polym 75:395CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Exact Sciences and Technologies Knowledge Area, Research Laboratory in Materials ChemistryUniversity of Caxias do SulCaxias do SulBrazil
  2. 2.Life Sciences Knowledge Area, Institute of BiotechnologyUniversity of Caxias do SulCaxias do SulBrazil
  3. 3.Department of Food Engineering, Exact Sciences and Technologies Knowledge AreaUniversity of Caxias do SulCaxias do SulBrazil

Personalised recommendations