Effect of Rice Husk Derived Nanosilica on the Structure, Properties and Biodegradability of Corn-Starch/LDPE Composites
- 19 Downloads
Abstract
Development of material with enhanced mechanical properties and biodegradability by the incorporation of synthesized inorganic nanostructured mesoporous silica from rice husk has been investigated. The produced nanosilica (≈ 25 nm and 213.045 m2/g surface area) and nanosilica blended LDPE/starch composites were extensively characterised by SEM, FTIR, XRD, XRF, TEM, EDAX and TGA analysis. The low cost of production estimated, ensures its feasibility toward large scale application. The addition of nanosilica into the matrix led to the enhancement of Young’s modulus and stiffness by a value of 535.6 MPa and 32172.81 N/m respectively at 3% nanosilica content, thereby enhancing the initial rigidity and resistivity towards deformation making a better biodegradable substitute in terms of initial application range. The MFI and hardness value also increased with increase of silica content upto 1.5% and 2% respectively to 7.23 g/10 min and 42 (Shor D). Increase in nanofiller content improved the value of degradation rate constant (k) of the weight loss data plot in both vegetable waste and garden soil environment. The addition of 1.5% of nanosilica to a blend of 80% LDPE and 20% starch showed almost the same biodegradation rate as that without nanosilica but with superior mechanical properties and applicability range.
Keywords
Nanosilica Starch Biodegradability Young’s modulus StiffnessNotes
Acknowledgements
Authors express their thankfulness to the technical persons of Central Institute of Plastic Engineering & Technology, Bhubaneswar, Odisha for their immense support towards indigenous preparation of biodegradable film. The financial support from the Ministry of Science and Technology, Government of West Bengal through the research project ST/P/S&T/IG-9/2016 is gratefully acknowledged.
References
- 1.Huang CY, Roan ML, Kuo MC, Lu WL (2005) Polym Degrad Stab 90:95Google Scholar
- 2.Thakore IM, Desai S, Sarawade BD, Devi S (2001) Eur Polym J 37:151Google Scholar
- 3.Arvanitoyannisa I, Biliaderis CG, Ogawab H, Kawasakib N (1998) Carbohydr Polym 36:89Google Scholar
- 4.Pedroso AG, Rosa DS (2005) Carbohydr Polym 59:1Google Scholar
- 5.Aburto J, Thiebaud S, Alric I, Borredon E, Bikiaris D, Prinos J, Panayiotou C (1997) PoIym 34:101Google Scholar
- 6.Rim M, Pometto AL (1994) J Food Prot 57:1007Google Scholar
- 7.Willett JL (1992) Biodegradable plastics. US Patent 5087650Google Scholar
- 8.Griffin GJL (1992) Emerging technologies for materials and chemicals from biomass.In Rowell RM, Schultz TP, Narayan R (Eds.), American Chemical Society. (pp. 476–482). Washington D. C.: ACS Symposium SeriesGoogle Scholar
- 9.Datta D, Halder G (2018) Process Saf Environ Prot 114:143Google Scholar
- 10.Lu YS, Tighzerta I, Dole P, Erre D (2005) Polym 46:9863Google Scholar
- 11.Funke U, Bergthaller W, Lindhauer MG (1998) Polym Degrad Stab 59:293Google Scholar
- 12.Hulleman SHD, Janssen FHP, Fiel H (1998) Polym, 39:2043Google Scholar
- 13.Surini S, Putri KSS, Anwar E (2014) Int J Pharm Pharm Sci 6:17Google Scholar
- 14.Pathania D, Sharma R (2012) Adv Mater 3(2):136Google Scholar
- 15.Muller JID, Martinez CG, Chiralt A (2017) Materials 10:2Google Scholar
- 16.FengCai L, Huang XB, Rong MZ, Ruan WH, Zhang MQ (2006) Polym 47:7043Google Scholar
- 17.Byung WJ, Kim CH, Tae GH, Park JB (2007) Constr Build Mater 2:1351Google Scholar
- 18.Hui C, Wang F, Zhang C, Shi Y, Jin G, Yuan S (2010) J Non-Crystr Solids 356:2781Google Scholar
- 19.Yalçin N, Sevinç V (2001) Ceram Int 27:219Google Scholar
- 20.Conradt R, Pimkhaokham P, Leela-Adisorn (1992) J Non-Cryst Solids 145:75Google Scholar
- 21.Sankar S, Sharma SK, Kaur N, Lee B, Kim DY, Lee S, Jung H (2016) Ceram Int 42:4875Google Scholar
- 22.Ghosh TB, Nandi KC, Acharya HN, Mukherjee D (1991) Mater Lett 12:175Google Scholar
- 23.Kurama S, Kurama H (2008) Ceram Int. 34:269Google Scholar
- 24.Sharma NK, Williams WS, Zangvil A (1984) J Am Ceram Soc 67:715Google Scholar
- 25.Ismail MS, Waliuddin AM (1996) Materials 10:521Google Scholar
- 26.Liou TH, Yang CC (2011) Mater Sci Eng B 176:521Google Scholar
- 27.Huang S, Jing S, Wang J, Wang Z, Jin Y (2001) Powder Technol 117:232Google Scholar
- 28.Liou TH (2004) Carbon 42:785Google Scholar
- 29.Mochidzuki K, Sakoda A, Suzuki M, Izumi J, Tomonaga N (2001) Ind Eng Chem Res 40:5705Google Scholar
- 30.Corradi AB, Bondioli F, Ferrari AM, Focher B, Leonelli C (2006) Powder Technol 167:45Google Scholar
- 31.Jal PK, Sudarshan M, Saha A, Patel S, Mishra BK (2004) Colloids Surf A Physicochem Eng Asp 240:173Google Scholar
- 32.Yuvakkumar R, Elango V, Rajendran V, Kaman N (2012) J Exp Nanosci 9(3):227Google Scholar
- 33.Moosa AA, Saddam BF (2017) Am J Mater Sci 7(6):223Google Scholar
- 34.Shen Y (2017) Renew Sustain Energy Rev 80:453Google Scholar
- 35.Real C, Alcala MD, Criado JM (1996) J Am Ceram Soc 79:2012Google Scholar
- 36.Chakraverty A, Mishra P, Banerjee H (1998) J Mater Sci 23:21Google Scholar
- 37.Thuadaij N, Nuntiya A (2008) Chang Mai Sci 38(1):206Google Scholar
- 38.Shen Y, Zhao P, Shao Q (2014) Micropor Mesopor Mat 188:46Google Scholar
- 39.Chen KT, Wang JX, Dai YM, Wang PH, Liou CY, Nien CW, Wu JS, Chen CC (2013) J Taiwan Inst Chem Eng 44:622Google Scholar
- 40.Wang L, Xue J, Gao B, Gao P, Mou C, Li J (2014) RSC Adv 4:64744Google Scholar
- 41.Dahlan I, Lee KT, Kamaruddin AH, Mohamed AR (2008) Environ Sci Technol 42:1499Google Scholar
- 42.Zeng W, Bai H (2014) Chem Eng J 251:1Google Scholar
- 43.Shen Y, Wang J, Ge X, Chen M (2016) Renew Sustain Energy Rev 59:1246Google Scholar
- 44.Shen Y, Chen M, Sun T, Jia J (2015) Fuel 159:570Google Scholar
- 45.Trewyn BG, Giri S, Slowing II, Lin VSY (2007) Chem Commun 31:3236Google Scholar
- 46.Adam F, Appaturi JN, Iqbal A (2012) Catal Today 190(1):2Google Scholar
- 47.Gurav JL, Jung IK, Park HH, Kang ES, Nadargi DY (2010) J Nanomater 23:1Google Scholar
- 48.Nikolic M, Nguyen HD, Daugaard AE, Lof D, Mortensen K, Barsberg S, Sanadi AR (2016) Polym Degrad Stab 126:134Google Scholar
- 49.Cai LF, Huang XB, Rong MN, Ruan WH, Zhang MQ (2006) Polym 47:7043Google Scholar
- 50.Midhun Dominic CD, Begum PMS, Joseph R, Joseph D, Kumar P, Ayswarya EP (2013) Intern J Sci Environ Tech 2(5):1027Google Scholar
- 51.Lee DW, Yoo BK (2016) J Ind Eng Chem 38:1Google Scholar
- 52.Ehraman T (1994) Chemical analysis and testing task: standard method for determination of total solids in biomass (LAP-001). NREL, Gold Co.Google Scholar
- 53.Ehraman T (1994) Chemical analysis and testing task: standard method for determination of ash in biomass (LAP- 005). NREL, Gold Co.Google Scholar
- 54.ASTM (1995) Standard test methods for tensile properties of thin plastics sheeting D882-91. In: Annual Book of American Standard Testing Methods. ASTM, Wet Conshohochem, 8:182Google Scholar
- 55.Mukherjee A, Halder S, Datta D, Kumar A, Hazra B, Mandal MK, Halder G (2017) J Adv Res 8:73Google Scholar
- 56.Kokot S, Stewart S (1995) Text Res J 65:643Google Scholar
- 57.Tang S, Zou P, Xiong H, Tang H (2008) Carbohydr Polym 72:521Google Scholar
- 58.Giles HF, Wagner JR, Mount EM (2005) Extrusion: the definition processing guide and hand book, 4th edn. William Andrew Inc, NorwichGoogle Scholar
- 59.Mohan SK, Srivastava T (2010) J Biochem Tech 2(4):210Google Scholar
- 60.Swain S, Sharma RA, Bhattachary S, Chaudhary L (2013) Trans Electr Electron Mater 14(1):1Google Scholar
- 61.Zou W, Yu L, Liu X, Chen L, Zhang X, Qiao D (2012) Carbohydr Polym 87(2):1583Google Scholar
- 62.Rashid I, Al Omari MH, Leharne SA, Chowdhury BZ, Badwan A (2012) Starch Starke 64(9):713Google Scholar
- 63.Zhou G, Luo Z, Fu X (2014) Indus Crops Prod 52:105Google Scholar
- 64.Muscat D, Adhikari B, Chaudhary DS (2012) J Food Eng 109(2):189Google Scholar
- 65.Joshi M, Aldred P, McKnight S, Panozzo JF, Kasapis S, Adhikari RI (2013) Carbohydr Polym 92(2):1484Google Scholar
- 66.Spagnol C, Rodrigues FHA, Pereira AGB, Fajardo AR, Tubira AF, Muniz EC (2012) Cellulose 19(4):1225Google Scholar
- 67.Dilfi KFA (2011) Linear low density polyethylene—biodegradability using bacteria from marine benthic, environment and photo degradability using ultraviolet light. Ph.D. Thesis, Cochin University of Science and Technology, KeralaGoogle Scholar
- 68.Wang Y, Ju B, Zhang S (2012) Carbohydr Polym 90(1):696Google Scholar
- 69.Luo Z, Xu Z (2011) Food Sci Technol 44(10):1993Google Scholar
- 70.Lipsa R, Tudorachi N, Vasile C, Chiriac A, Grigoras A (2013) J Polym Environ 21(2):461Google Scholar
- 71.Ungar T (2004) Scripta Mater 51:777Google Scholar
- 72.Jeffery D, Vyazovkin PS, Wight CA (2001) Macromol Chem Phys 202:775Google Scholar
- 73.Hinsken H, Moss S, Pauquet JR, Zweifel H (1991) Polym Degrad Stab 34:279Google Scholar
- 74.Ali SS, Ishtiaq AQ, Arshad M, Khan Z, Voice TC, Mehmood CT (2016) Environ Nanotech Monitor Manag 5:44Google Scholar
- 75.Rathod MC, Godhani VJ, Dhale DA (2015) J Pharm Sci 4(10):1323Google Scholar
- 76.Sen SK, Raut S (2015) J Environ Chem Eng 5(3):1Google Scholar
- 77.Kawai F, Schink B (1987) Crit Rev Biotechnol 6(3):273Google Scholar
- 78.Mondal S, Aikat K, Haldar G (2016) Ecol Eng 92:158Google Scholar