Characterization of a κ-Carrageenan Hydrogel and its Evaluation as a Coating Material for Fertilizers

  • Johanna Santamaría VanegasEmail author
  • Gladys Rozo Torres
  • Briyith Barreto Campos
Original Paper


A novel carrageenan-based hydrogel (CBH) was developed via cross-linking and ion interaction methods to obtain a coating for NPK fertilizer grains. Attenuated total reflectance–Fourier transform infrared analysis (ATR–FTIR), scanning electron microscopy (SEM), texture profile analysis (TPA), rheological study, and swelling kinetics were used to characterize the physicochemical properties of the CBH. To test the slow-release behavior of the coated fertilizer and the adequate provision of nutrients for plants, the leaching rates of N, P, and K were determined through soil column experiments, and plant growth indicators were measured in greenhouse experiments in a yellow potato crop (Solanum phureja). The results showed that CBH is a material with homogeneous appearance, porous structure, similar chemical structure to κ-carrageenan, and resistance and low deformation at the fracture point. The swelling behavior experiments showed a maximum increase in thickness of 74% by water absorption, with osmolality being an important factor controlling the entry of water into the CBH. Wash experiments in soil columns showed that the noncoated granules released 12 and 18% less N–NH4+ and K+ than the noncoated fertilizer, both after 90 mm of accumulated precipitation. Less than 0.1% of P–PO4−3 was lost in both treatments. No significant differences were observed in any of the growth plant and quality indicator variables between the plants grown with coated and noncoated fertilizer.


Carrageenan Coated fertilizers Hydropolymers Solanum phureja 



The authors would like to thank Dr. Carlos Nústez for providing access to the greenhouse facility at National University. This work was carried out with the support of the Departamento Administrativo de Ciencia, Tecnología e Innovación de la República de Colombia (Grant No. 1202-669-45888) and Jorge Tadeo Lozano University. The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as potential conflicts of interest. All data analyzed during this study are included in this article supplementary information files.


  1. 1.
    Russel DA, Williams GG (1977) Soil Sci Soc Am J 41:260–265CrossRefGoogle Scholar
  2. 2.
    FAO (1981) Crop production levels and fertilizer use. FAO Fertilizer and Plant Nutrition Bulletin 2, RomeGoogle Scholar
  3. 3.
    Tilman D, Cassman KG, Matson PA (2002) Nature 418:671–677CrossRefGoogle Scholar
  4. 4.
    Smil V (2000) Annu Rev Energ Environ 25:53–88CrossRefGoogle Scholar
  5. 5.
    Cassman KG, Dobermann A, Walters DT (2002) AMBIO 31:132–140CrossRefGoogle Scholar
  6. 6.
    Alfaro MA, Jarvis SC, Gregory PJ (2004) Soil Use Manag 20:182–189CrossRefGoogle Scholar
  7. 7.
    Zhao BQ, Li XY, Liu H, Wang BR, Zhu P, Huang SM, Bao DJ, Li YT, So HB (2011) NJAS Wagen J Life Sci 58:177–183CrossRefGoogle Scholar
  8. 8.
    Ongley OD (1996) Control of water pollution from agriculture. FAO Irrigation and Drainage Paper No. 55. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  9. 9.
    Withers PJA, Neal C, Jarvie HP, Doody DG (2014) Sustainability 6:5853–5875CrossRefGoogle Scholar
  10. 10.
    Bouwman AF, Boumans LJM, Batjes NH (2002) Global Biogeochem Cycles 16:6–13Google Scholar
  11. 11.
    Bhatia A, Pathak H, Aggarwal PK (2004) Curr Sci 87:317–324Google Scholar
  12. 12.
    Molina-Herrera S, Haas E, Klatt S, Kraus D, Augustin J, Magliulo V, Tallec T, Ceschia E, Amman C, Loubet B, Skiba U, Jones S, Brümmer C, Butterbach-Bahl K, Kiese R (2016) Sci Total Environ 553:128–140CrossRefGoogle Scholar
  13. 13.
    FAO. Food and Agriculture Organization of United Nations (2015) World fertilizer trends and outlook to 2018. Food and Agriculture Organization of United Nations, RomeGoogle Scholar
  14. 14.
    Drescher A, Glaser R, Richert C, Nippes KR (2011) Demand for key nutrients (NPK) in the year 2050. University of Freiburg Department of Geography. Draft reportGoogle Scholar
  15. 15.
    UN DESA (2017) World population prospects: the 2017 revision. United Nations, New YorkGoogle Scholar
  16. 16.
    Calabi-Floody M, Medina J, Rumpel C (2018) Adv Agron 147:119–157CrossRefGoogle Scholar
  17. 17.
    Azeem B, KuShaari K, Man ZB, Basit A, Thanh TH (2014) J Control Release 181:11–21CrossRefGoogle Scholar
  18. 18.
    Naz MY, Sulaiman SA (2016) J Control Release 225:109–120CrossRefGoogle Scholar
  19. 19.
    Jing W, Song LIU, Yukun QIN (2017) Chin J Oceanol Limnol 35:1086–1093CrossRefGoogle Scholar
  20. 20.
    Campos EVR, de Oliveira JL, Fraceto LF, Singh B (2014) Agron Sustain Dev 35:47–66CrossRefGoogle Scholar
  21. 21.
    Guilherme MR, Aouada FA, Fajardo AR, Martins AF, Paulino AT, Davi MF, Rubira AF, Muniz EC (2015) Eur Polym J 72:365–385CrossRefGoogle Scholar
  22. 22.
    Kuang J, Yuk KY, Huh KM (2011) Carbohydr Polym 83:284–290CrossRefGoogle Scholar
  23. 23.
    Bai W, Song J, Zhang H (2013) Acta Agric Scand Sect B Soil Plant Sci 63:433–441Google Scholar
  24. 24.
    Hou X, Li R, He W (2017) J Soils Sediments 1–11Google Scholar
  25. 25.
    Rhim J, Wang L (2013)) Carbohydr Polym 96:71–81CrossRefGoogle Scholar
  26. 26.
    Wang Y, Liu M, Ni B, Xie L (2012) Ind Eng Chem Res 51:1413–1422CrossRefGoogle Scholar
  27. 27.
    Avella M, Emilia DP, Immirzi B, Impallomeni G, Malinconico M, Santagata G (2007) Carbohydr Polym 69:503–511CrossRefGoogle Scholar
  28. 28.
    FAO (2008) International year of the potato. Accessed 1 Nov 2018
  29. 29.
    FAO (2002) Fertilizer use by crop. FAO Fertilizer and Plant Nutrition Bulletin No. 16. RomeGoogle Scholar
  30. 30.
    Pons M, Fiszman SM (1996) J Texture Stud 27:597–624CrossRefGoogle Scholar
  31. 31.
    Senff H. Richtering W (1999) J Chem Phys 111:1705–1711CrossRefGoogle Scholar
  32. 32.
    Macleod GS, Collett JH, Fell JT (1999) J Control Release 58:303–310CrossRefGoogle Scholar
  33. 33.
    Qiao D, Liu H, Yu L, Bao X, Simon GP. Petinakis E, Chen L (2016) Carbohydr Polym 147:146–154CrossRefGoogle Scholar
  34. 34.
    R Core Team (2016) A language and environment for statistical computing. R foundation for statistical computing. Vienna, AustriaGoogle Scholar
  35. 35.
    Dean BB, Thornton RE (1992) The specific gravity of Potatoe. Extension bulletin 1541. Washington State University, Cooperative Extension, PullmanGoogle Scholar
  36. 36.
    Manuhara GJ, Praseptiangga D, Riyanto RA (2016) Aquat Procedia 7:106–111CrossRefGoogle Scholar
  37. 37.
    Torres MD, Chenlo F, Moreira R (2018) Carbohydr Polym 180:72–80CrossRefGoogle Scholar
  38. 38.
    Rhein-Knudsen N, Ale MT, Ajalloueian F, Yu L, Meyer AS (2017) Food Hydrocolloids 63:50–58CrossRefGoogle Scholar
  39. 39.
    Chen J, Park K (2000) J Control Release 65:73–82CrossRefGoogle Scholar
  40. 40.
    Rashidzadeh A, Olad A (2014) Carbohydr Poly 114:269–278CrossRefGoogle Scholar
  41. 41.
    Derkach SR, Voron’ko NG, Kuchin YA, Kolotova DS, Gordeeva AM, Faizullin DA, Makshakova ON (2018) Carbohydr Polym 197:66–74CrossRefGoogle Scholar
  42. 42.
    Ruiz Aviles G (2006) Ingeniería y Ciencia 2:5–28Google Scholar
  43. 43.
    Farhan A, Hani NM (2017) Food Hydrocolloids 64:48–58CrossRefGoogle Scholar
  44. 44.
    Li X, Li Q, Xu X, Su Y, Yue Q, Gao B (2016) J Taiwan Inst Chem Eng 60:564–572CrossRefGoogle Scholar
  45. 45.
    Shi Y, Xiong D, Liu Y, Wang N, Zhao X (2016) Mater Sci Eng C 65:172–180CrossRefGoogle Scholar
  46. 46.
    Ako K (2017) Carbohydr Polym 169:376–384CrossRefGoogle Scholar
  47. 47.
    Drozdov AD, Christiansen JDC, Sanporean CG (2016) Int J Solids Struct 87:11–25CrossRefGoogle Scholar
  48. 48.
    Daza Agudelo JI, Badano JM, Rintoul I (2018) Mater Chem Chem Phys 216:14–21CrossRefGoogle Scholar
  49. 49.
    Senna AM, Botaro VR (2017) J Control Release 260:194–201CrossRefGoogle Scholar
  50. 50.
    Have M, Marmagne A, Chardon F, Masclaux-Daubresse C (2017) J Exp Bot 68:2513–2529Google Scholar
  51. 51.
    Hopkins WG, Hüner NPA (2008) Introduction to plant physiology, 4th edn. Wiley, USAGoogle Scholar
  52. 52.
    Li X, He JZ, Liu YR, Zheng YM (2013) J Soils Sediments 13:711–719CrossRefGoogle Scholar
  53. 53.
    Li Y, Sun Y, Liao S (2017) Agric Water Manag 186:139–146CrossRefGoogle Scholar
  54. 54.
    Li P, Lu J, Wang Y (2018) Agric Ecosyst Environ 251:78–87CrossRefGoogle Scholar
  55. 55.
    Zhu Q, Zhang M, Ma Q (2012) Sci Hortic 143:109–114CrossRefGoogle Scholar
  56. 56.
    Zhao B, Dong S, Zhang J, Liu P (2013) PLoS ONE 8:1–8Google Scholar
  57. 57.
    González ME, Cea M, Medina J, González A, Diez MC, Cartes P, Monreal C, Navia R (2015) Sci Total Environ 505:446–453CrossRefGoogle Scholar
  58. 58.
    Chen D, Suter H, Islam A, Edis R, Freney JR, Walker CN (2008) Aust J Soil Res 46:289–301CrossRefGoogle Scholar
  59. 59.
    Fedepapa (2018) El agricultor y su papel en el pais. Bogotá, ColombiaGoogle Scholar
  60. 60.
    Harmunt K, Stephan-Beckmann S (1997) Potato Res 40:135–153CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biological and Environmental SciencesJorge Tadeo Lozano UniversityBogotáColombia
  2. 2.Department of Basic Sciences and ModelingJorge Tadeo Lozano UniversityBogotáColombia
  3. 3.Department of ChemistryFrancisco José de Caldas UniversityBogotáColombia

Personalised recommendations