Advertisement

Preparation of nanofibrillated cellulose and application in reinforced PLA/starch nanocomposite film

  • Jiangchun Mao
  • Yanjun TangEmail author
  • Ruonan Zhao
  • Yiming Zhou
  • Zhanbin Wang
Original paper
  • 28 Downloads

Abstract

Polylactic acid (PLA), one of the most promising biopolymers with exceptional properties, is being used in a wide variety of applications in diverse fields. However, low degradation rate, relatively high cost and inherently high brittleness of PLA severely hamper its further development, particularly in functional nanocomposites for bio-based packaging. In the present work, green, biodegradable and reinforced PLA-based nanocomposite films were designed and prepared, where starch was incorporated for reducing the overall cost of nanocomposites for large-scale application, and nanofibrillated cellulose (NFC) isolated from microcrystalline cellulose (MCC) via a completely green process was employed as a reinforcing phase. Initially, the morphology structure and dimension of the NFC samples isolated by high-pressure homogenization (HPH) coupled with hot water pretreatment were characterized using SEM, FT-IR, XRD, and laser scattering particle analyzer. Moreover, the effect of NFC loadings on the rheological behavior of the PLA based nanocomposite suspensions and the overall properties of the corresponding nanocomposite films were investigated. Results indicated that increased NFC loadings reduced the shear viscosity and shear stress of the nanocomposite suspensions. Furthermore, the desired PLA/starch/NFC nanocomposite films were found to exhibit improved tensile strength, Young’s modulus and reduced air permeability in comparison to pure PLA/starch films. This work offered an effective route for the preparation of biodegradable and reinforced PLA-based nanocomposite films, which may be promising bio-nanocomposite materials for food packaging applications.

Keywords

Nanofibrillated cellulose Reinforced nanocomposite films Rheological behavior Mechanical properties 

Notes

Acknowledgements

This work was financially supported by the Zhejiang Provincial Natural Science Foundation of China (Grant Nos. LY14C160003, LQ16C160002), the National Natural Science Foundation of China (Grant No. 31100442), the Public Projects of Zhejiang Province (Grant Nos. 2017C31059, LGG19C160002), Zhejiang Provincial Top Key Academic Discipline of Chemical Engineering, Technology, Zhejiang Open Foundation of the Most Important Subjects (Grant No. 2016KF01), 521 Talent Cultivation Program of Zhejiang Sci-Tech University (Grant No. 11110132521310), Open Foundation of Key Laboratory of Renewable Energy, Chinese Academy of Sciences (Grant No. Y607s11001).

Author Contributions

Yanjun Tang and Jiangchun Mao conceived and designed the experiments; Jiangchun Mao, and Ruonan Zhao performed the experiments and analyzed the data; Jiangchun Mao, Yanjun Tang, Ruonan Zhao, Yiming Zhou, and Zhanbin Wang wrote the paper. All authors reviewed the manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Mofokeng JP, Luyt AS (2015) J Macromol Sci 132:3812–3824Google Scholar
  2. 2.
    Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Compr Rev Food Sci Food Ssf 9:552–571Google Scholar
  3. 3.
    Schwach E, Avérous L (2010) Polym Int 53:2115–2124Google Scholar
  4. 4.
    Shogren RL, Selling G, Willett JL (2011) J Polym Environ 19:329–334CrossRefGoogle Scholar
  5. 5.
    Koh JJ, Zhang X, He C (2018) Int J Biol Macromol 109:99–113CrossRefGoogle Scholar
  6. 6.
    Liao HT, Wu CS (2009) Mater Sci Eng A 515:207–214Google Scholar
  7. 7.
    Cheng L, Zhang D, Gu Z, Li Z, Hong Y, Li C (2018) Int J Biol Macromol 111:959–966CrossRefGoogle Scholar
  8. 8.
    Liu K, Nasrallah J, Chen L, Huang L, Ni Y, Lin S, Wang H (2018) Carbohydr Polym 194:97–102Google Scholar
  9. 9.
    Yingying L, Qingbo W, Qianfeng S, Meiyan W, Chao L, Yuedong Z, Guang Y, Bin L, Youming L (2018) ChemistrySelect 3:6852–6858CrossRefGoogle Scholar
  10. 10.
    Liu K, Lin X, Chen L, Huang L, Cao S (2014) Cellulose 21:519–528CrossRefGoogle Scholar
  11. 11.
    Mou K, Li J, Wang Y, Cha R, Jiang X (2017) J Mater Chem B 5:7876–7884CrossRefGoogle Scholar
  12. 12.
    Pang J, Wu M, Liu X, Wang B, Yang J, Xu F, Ma M, Zhang X (2017) Sci Rep 7:1–10CrossRefGoogle Scholar
  13. 13.
    Xie H, Du H, Yang X, Si C (2018) Int J Ploym Sci 2018:1–25Google Scholar
  14. 14.
    Chen Y, Geng B, Ru J, Tong C, Liu H, Chen J (2017) Cellulose 24:1–14CrossRefGoogle Scholar
  15. 15.
    Du H, Liu C, Zhang Y, Yu G, Si C, Li B (2016) Ind Crop Prod 94:736–745CrossRefGoogle Scholar
  16. 16.
    Sharma HS, Carmichael E, Muhamad M, Mccall D, Andrews F, Lyons G, Mcroberts WC, Hornsby PR (2012) Rsc Adv 2:6424–6437CrossRefGoogle Scholar
  17. 17.
    Herrera N, Mathew AP, Oksman K (2015) Compos Sci Technol 106:149–155Google Scholar
  18. 18.
    Wu B, Geng B, Chen Y, Liu H, Li G, Wu Q (2017) Front Chem Sci Eng 11:554–563CrossRefGoogle Scholar
  19. 19.
    Fortunati E, Luzi F, Puglia D, Petrucci R, Kenny JM, Torre L (2015) Ind Crop Prod 67:439–447CrossRefGoogle Scholar
  20. 20.
    Simão CD, Reparaz JS, Wagner MR, Graczykowski B, Kreuzer M, Ruiz-Blanco YB, García Y, Malho JM, Goñi AR, Ahopelto J (2015) Carbohydr Polym 126:40–46Google Scholar
  21. 21.
    Sharma HSS, Carmichael E, Muhamad M, Mccall D, Andrews F, Lyons G, Mcroberts WC, Hornsby PR (2012) Rsc Adv 2:6424–6437CrossRefGoogle Scholar
  22. 22.
    Tang Y, Yang S, Zhang N, Zhang J (2014) Cellulose 21:335–346CrossRefGoogle Scholar
  23. 23.
    Yang Q, Pan X, Huang F, Li K (2011) Cellulose 18:1611–1621CrossRefGoogle Scholar
  24. 24.
    Cha R, He Z, Ni Y (2012) Carbohydr Polym 88:713–718Google Scholar
  25. 25.
    Liu Y, Wang H, Yu G, Yu Q, Li B, Mu X (2014) Carbohydr Polym 110:415–422Google Scholar
  26. 26.
    Savadekar NR, Karande VS, Vigneshwaran N, Bharimalla AK, Mhaske ST (2012) Int J Biol Macromol 51:1008–1013CrossRefGoogle Scholar
  27. 27.
    Sun X, Wu Q, Sunyoung L, Yan Q, Wu Y (2016) Sci Rep 6:1–9CrossRefGoogle Scholar
  28. 28.
    Akrami M, Ghasemi I, Azizi H, Karrabi M, Seyedabadi M (2016) Carbohydr Polym 144:254Google Scholar
  29. 29.
    Courgneau C, Domenek S, Guinault A, Avérous L, Ducruet V (2011) J Polym Environ 19:362–371CrossRefGoogle Scholar
  30. 30.
    Ibrahim N, Ab Wahab MK, Uylan DN, Ismail H (2017) Bioresources 12:3076–3087CrossRefGoogle Scholar
  31. 31.
    Davachi SM, Shiroud HB, Hejazi I, Seyfi J, Oliaei E, Farzaneh A, Rashedi H (2017) Carbohydr Polym 155:336–344Google Scholar
  32. 32.
    Mathew AP, Oksman K, Sain M (2005) J Appl Polym Sci 97:2014–2025CrossRefGoogle Scholar
  33. 33.
    Mathew AP, Oksman K, Sain M (2006) J Appl Polym Sci 101:300–310CrossRefGoogle Scholar
  34. 34.
    Xian X, Wang X, Zhu Y, Guo Y, Tian Y (2018) J Polym Environ 26:3484–3492CrossRefGoogle Scholar
  35. 35.
    Lee JH, Park SH, Kim SH (2013) Macromol Res 21:1218–1225Google Scholar
  36. 36.
    Aulin C, Karabulut E, Tran A, Wågberg L, Lindström T (2013) Acs Appl Mater Interfaces 5:7352–7359Google Scholar
  37. 37.
    Sethi J, Illikainen M, Sain M, Oksman K (2017) Eur Polym J 86:188–199Google Scholar
  38. 38.
    Tang Y, Zhang X, Zhao R, Guo D, Zhang J (2018) Carbohydr Polym 197:128–136Google Scholar
  39. 39.
    Samir MASA, Alloin F, Sanchez JY, Dufresne A (2004) Polymer 45:4149–4157CrossRefGoogle Scholar
  40. 40.
    Xiongwei W, Peiyi W (2018) Acs Appl Mater Interfaces 10:34311–34321Google Scholar
  41. 41.
    Gorrasi G, Pantani R, Murariu M, Dubois P (2014) Macromol Mater Eng 299:104–115Google Scholar
  42. 42.
    Sanchezgarcia MD, Gimenez E, Lagaron JM (2008) Carbohydr Polym 71:235–244Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jiangchun Mao
    • 1
  • Yanjun Tang
    • 1
    • 2
    • 3
    Email author
  • Ruonan Zhao
    • 1
  • Yiming Zhou
    • 1
  • Zhanbin Wang
    • 1
    • 4
  1. 1.National Engineering Laboratory of Textile Fiber Materials and Processing TechnologyZhejiang Sci-Tech UniversityHangzhouChina
  2. 2.Pulp and Paper CenterZhejiang Sci-Tech UniversityHangzhouChina
  3. 3.Key Laboratory of Renewable EnergyChinese Academy of SciencesGuangzhouChina
  4. 4.Hangzhou Electrical and Mechanical Design Institute of Light IndustryHangzhouChina

Personalised recommendations