Advertisement

Synthesis of Recycled Poly(ethylene terephthalate)/Polyacrylonitrile/Styrene Composite Nanofibers by Electrospinning and Their Mechanical Properties Evaluation

  • Manuel J. Chinchillas-Chinchillas
  • Víctor M. Orozco-Carmona
  • Clemente G. Alvarado-Beltrán
  • Jorge L. Almaral-Sánchez
  • Selene Sepulveda-Guzman
  • Luis E. Jasso-Ramos
  • Andrés Castro-BeltránEmail author
Original Paper
  • 40 Downloads

Abstract

Consumption of polyethylene terephthalate (PET) products has increased dramatically in recent decades, resulting in the generation of a large amount of PET waste. For that reason, is necessary to find a new application of recycled material. In this article, we report the synthesis and characterization of recycled poly (ethylene terephthalate) (RPET) obtained from the chemical recycling of post-consumer PET bottles by glycolysis method and the formation of composites nanofibers RPET/polyacrylonitrile (PAN)/styrene (ST). The RPET synthesis was studied through infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA). The viscosity and frequency sweep of the polymeric solutions was evaluated. The composites nanofibers were elaborated by the electrospinning technique and characterized by scanning electron microscopy (SEM), FT-IR, TGA/DSC and nanoindentation. The RPET/PAN/ST composite nanofibers present an average diameter of 456 nm and higher thermal stability compared PAN fibers. The mechanical properties such as hardness and elastic modulus were 4.5 and 7.5 times PAN fibers values, respectively.

Keywords

Recycled PET Nanofibers Composite Cross-linked Nanoindentation 

Notes

Acknowledgements

The authors acknowledge the support of the DGIP-Universidad Autónoma de Sinaloa, through of the PROFAPI 2015/066 project and to the CONACYT, for the financial support for the development of this work.

References

  1. 1.
    Strain IN, Wu Q, Pourrahimi AM, Hedenqvist MS, Olsson RT, Andersson RL (2015) J Mater Chem A 3:1632Google Scholar
  2. 2.
    Ge Z, Huang D, Sun R, Gao Z (2014) Constr Build Mater 73:682Google Scholar
  3. 3.
    Cosnita M, Cazan C, Duta A (2017) J Clean Prod 165:630Google Scholar
  4. 4.
    George N, Kurian T (2014) Ind Eng Chem Res 53:14185Google Scholar
  5. 5.
    Siddiqui MN, Redhwi HH, Achilias DS (2012) J Anal Appl Pyrolysis 98:214Google Scholar
  6. 6.
    Choi YJ, Kim SH (2015) Text Res J 85:337Google Scholar
  7. 7.
    Dutt K, Soni RK (2013) Polym Sci Ser B 55:430Google Scholar
  8. 8.
    Rusmirovic JD, Radoman T, Dzunozovic ES, Dzunuzovic JV, Markovscki J, Spasojevic P et al (2015) Polym Polym Compos 1:101Google Scholar
  9. 9.
    Yue QF, Wang CX, Zhang LN, Ni Y, Jin YX (2011) Polym Degrad Stab 96:399Google Scholar
  10. 10.
    Espinoza García K, Navarro R, Ramírez-Hernández A, Marcos-Fernández Á (2017) Polym Degrad Stab 144:195Google Scholar
  11. 11.
    Mendivil-Escalante JM, Gómez-Soberón JM, Almaral-Sánchez JL, Cabrera-Covarrubias FG (2017) Materials (Basel) 2017:10Google Scholar
  12. 12.
    Tang T, Moyori T, Takasu A (2013) Macromolecules 46:5464Google Scholar
  13. 13.
    Gowsika J, Nanthini R (2014) J Chem 2014:1Google Scholar
  14. 14.
    Sadler JM, Toulan FR, Palmese GR, La Scala JJ (2015) J Appl Polym Sci 132:1Google Scholar
  15. 15.
    Wu Y, Li K (2016) J Appl Polym Sci 133:6Google Scholar
  16. 16.
    Ansari F, Skrifvars M, Berglund L (2015) Compos Sci Technol 117:298Google Scholar
  17. 17.
    Zhang L, Aboagye A, Kelkar A, Lai C, Fong H (2014) J Mater Sci 49:463Google Scholar
  18. 18.
    Uddin ME, Layek RK, Kim NH, Hui D, Lee JH (2015) Composite B 80:238Google Scholar
  19. 19.
    Ahmed FE, Lalia BS, Hashaikeh R (2015) DES 356:15Google Scholar
  20. 20.
    Lee SJ, Heo DN, Moon JH, Ko WK, Lee JB, Bae MS et al (2014) Carbohydr Polym 111:530Google Scholar
  21. 21.
    Sun B, Li X, Zhao R, Yin M, Wang Z, Jiang Z et al (2016) J Taiwan Inst Chem Eng 62:219Google Scholar
  22. 22.
    Villarreal-Gómez LJ, Cornejo-Bravo JM, Vera-Graziano R, Grande D (2016) J Biomater Sci Polym Ed 27:157Google Scholar
  23. 23.
    Hari Prasad K, Vinoth S, Jena P, Venkateswarlu M, Satyanarayana N (2017) Mater Chem Phys 194:188Google Scholar
  24. 24.
    Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) Compos Sci Technol 63:2223Google Scholar
  25. 25.
    Hu C, Li Z (2015) Constr Build Mater 90:80Google Scholar
  26. 26.
    Almasian A, Olya ME, Mahmoodi NM (2015) J Taiwan Inst Chem Eng 49:119Google Scholar
  27. 27.
    Miao F, Shao C, Li X, Wang K, Liu Y (2016) J Mater Chem A 4:4180Google Scholar
  28. 28.
    Abramovitch I, Hoter N, Levy H, Gedanken A, Wolf A, Eitan A et al (2016) J Compos Mater 50:1031Google Scholar
  29. 29.
    Almuhamed S, Bonne M, Khenoussi N, Brendle J, Schacher L, Lebeau B et al (2016) J Ind Eng Chem 35:146Google Scholar
  30. 30.
    Yang C xia, Lei L, Zhou P, Zhang Z, Lei Z (2015) J Colloid Interface Sci 443:97Google Scholar
  31. 31.
    Kamoun EA, Chen X, Mohy Eldin MS, Kenawy ERS (2015) Arab J Chem 8:1Google Scholar
  32. 32.
    Wang SH, Lin HL (2014) J Power Sources 257:254Google Scholar
  33. 33.
    Grkovic M, Stojanovic DB, Pavlovic VB, Rajilic-Stojanovic M, Bjelovic M, Uskokovic PS (2017) Composite B 121:58Google Scholar
  34. 34.
    Mendivil JM, Gómez JM, Almaral JL, Corral R, Arredondo SP, Castro A, Cabrera FG (2015) Int J Struct Anal Des 2:105Google Scholar
  35. 35.
    Miranda Vidales JM, Narvarez Hernandez L, Tapia Lopez JI, Martinez Flores EE, Hernandez LS (2014) Constr Build Mater 65:376Google Scholar
  36. 36.
    Marinković AD, Radoman T, Džunuzović ES, Džunuzović JV (2013) Polymers (Basel) 6:913Google Scholar
  37. 37.
    Duque-Ingunza I, López-Fonseca R, de Rivas B, Gutiérrez-Ortiz JI (2013) J Mater Cycles Waste Manag 15:256Google Scholar
  38. 38.
    Jamdar V, Kathalewar M, Abhinav K, Sabnis A (2017) Prog Org Coat 107:54Google Scholar
  39. 39.
    Svinterikos E, Zuburtikudis I (2016) J Appl Polym Sci 133:1Google Scholar
  40. 40.
    Djebara M, Stoquert JP, Abdesselam M, Muller D, Chami AC (2012) Nucl Instrum Methods Phys Res Sect B 274:70Google Scholar
  41. 41.
    Carvalho LA, Ardisson JD, Lago RM, Vargas MD, Araujo MH (2015) RSC Adv 5:97248Google Scholar
  42. 42.
    Bal K, Ünlü KC, Acar I, Güçlü G (2017) J Coat Technol Res 14:747Google Scholar
  43. 43.
    Liu C, Li J, Lei W, Zhou Y (2014) Ind Crops Prod 52:329Google Scholar
  44. 44.
    Jung HR, Ju DH, Lee WJ, Zhang X, Kotek R (2009) Electrochim Acta 54:3630Google Scholar
  45. 45.
    Casasola R, Thomas NL, Trybala A, Georgiadou S (2014) Polym (United Kingdom) 55:4728Google Scholar
  46. 46.
    Razmkhah S, Razavi SMA, Mohammadifar MA (2017) Food Hydrocoll 63:404Google Scholar
  47. 47.
    Xu X-Y, Zeng G-M, Peng Y-R, Zeng Z (2012) Chem Eng J 202:25Google Scholar
  48. 48.
    Feng Y, Han G, Zhang L, Chen SB, Chung TS, Weber M et al (2016) Polym (United Kingdom) 99:72Google Scholar
  49. 49.
    Nadgorny M, Gentekos DT, Xiao Z, Singleton SP, Fors BP, Connal LA (2017) Macromol Rapid Commun 38:1Google Scholar
  50. 50.
    Talebi S, Duchateau R, Rastogi S, Kaschta J, Peters GWM, Lemstra PJ (2010) Macromolecules 43:2780Google Scholar
  51. 51.
    Zhang H (2012) Mater Sci Technol 12:6Google Scholar
  52. 52.
    Evans T, Lee JH, Bhat V, Lee SH (2015) J Power Sources 292:1Google Scholar
  53. 53.
    Rezaei F, Nikiforov A, Morent R, De Geyter N (2018) Sci Rep 8:1Google Scholar
  54. 54.
    Issam AM, Hena S, Nurul Khizrien AK (2012) J Polym Environ 20:469Google Scholar
  55. 55.
    Yu D, Bai J, Liang H, Ma T, Li C (2016) Dye Pigment 133:51Google Scholar
  56. 56.
    Potiyaraj P, Klubdee K, Limpiti T (2007) J Appl Polym Sci 104:2536Google Scholar
  57. 57.
    Chiu HT, Chiu SH, Jeng RE, Chung JS (2000) Polym Degrad Stab 70:505Google Scholar
  58. 58.
    Yu X, Park HS (2016) J Ind Eng Chem 34:61Google Scholar
  59. 59.
    Ju Y-W, Oh G-Y (2017) Korean J Chem Eng 34:2731Google Scholar
  60. 60.
    Beg MDH, Moshiul Alam AKM, Yunus RM, Mina MF (2015) J Nanoparticle Res 17Google Scholar
  61. 61.
    Babu JSS, Kang CG (2010) Mater Des 31:4881Google Scholar
  62. 62.
    Liao CC, Wang CC, Chen CY, Lai WJ (2011) Polymer (Guildf) 52:2263Google Scholar
  63. 63.
    Li TC, Chung CJ, Han CF, Hsieh PT, Chen KJ, Lin JF (2014) Ceram Int 40:591Google Scholar
  64. 64.
    Li XY, Wang X, Yu DG, Ye S, Kuang QK, Yi QW, et al (2012) J Nanomater 2012:1Google Scholar
  65. 65.
    Li W, Yang Z, Zhang G, Fan Z, Meng Q, Shen C, et al (2014) J Mater Chem A 2:2110Google Scholar
  66. 66.
    Wang Y, Cui X, Yang Q, Deng T, Wang Y, Yang Y et al (2015) Green Chem 17:4527Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Manuel J. Chinchillas-Chinchillas
    • 1
  • Víctor M. Orozco-Carmona
    • 2
  • Clemente G. Alvarado-Beltrán
    • 1
  • Jorge L. Almaral-Sánchez
    • 1
  • Selene Sepulveda-Guzman
    • 3
  • Luis E. Jasso-Ramos
    • 4
  • Andrés Castro-Beltrán
    • 1
    Email author
  1. 1.Facultad de Ingeniería MochisUniversidad Autónoma de SinaloaLos MochisMexico
  2. 2.Departamento de MetalurgiaCentro de Investigación en Materiales Avanzados, S.C.ChihuahuaMexico
  3. 3.Facultad de Ingeniería Mecánica y EléctricaUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico
  4. 4.Departamento de InvestigaciónUniversidad Politécnica de ApodacaApodacaMexico

Personalised recommendations