Hydrogel Preparation Technologies: Relevance Kinetics, Thermodynamics and Scaling up Aspects

  • Marwa Mohamed ElsayedEmail author


Hydrogels are three-dimensional structure composed of organic resources with lightly cross-linked having high to very high swelling ability in aqueous solutions. Due to the special physical and chemical properties of hydrogels, such as: flexibility, swell-ability, softness, and biocompatibility, there are growing research interest in the hydrogel synthesis, developing its properties, and hence increasing the applications in different fields. Both natural and synthetic polymers either physically or chemically cross-linked for producing hydrogels. This review covers definition, classification, application of polymer hydrogels and an also, overview of the different synthesis processes, kinetics and thermodynamics mathematical modeling approaches. A case study related to producing and using hydrogel in various areas has been reviewed.


Hydrogel Absorption kinetics Swelling kinetics Thermodynamics 



  1. 1.
    Calo E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267CrossRefGoogle Scholar
  2. 2.
    Prinsy Rana G, Ganarajan, Kothiyal P (2015) review on preparation and properties hydrogel formulation. World J Pharm Pharm Sci 4(12):43–57Google Scholar
  3. 3.
    Kulicke WM, Nottelmann H (1989) Structure and swelling of some synthetic, semisynthetic, and biopolymer hydrogels. Adv Chem 223:15–44CrossRefGoogle Scholar
  4. 4.
    Peppas NA (1987) Hydrogels in medicine and pharmacy, vol 3. CRC Press, Boca RatonGoogle Scholar
  5. 5.
    Mathur MA, Shailender KM, Scranton A (1996) Methods for synthesis of hydrogel networks: a review. J Macromol Sci Polym Rev 36 (1996):405–430CrossRefGoogle Scholar
  6. 6.
    Bouranis DL, Theodoropoulos AG, Drossopoulos JB (1995) Designing synthetic polymers as soil conditioners. Commun Soil Sci Plant Anal 26,:1455–1480CrossRefGoogle Scholar
  7. 7.
    Ichikawa T, Nakajima T, Super absorptive polymers (from natural polysaccharides and polypeptides), In: Polymeric Materials Encyclopedia, Salamone (Ed), CRC, Boca Raton (Florida), 8051–8059, 1996Google Scholar
  8. 8.
    Po R (1994) Water-absorbent polymers: a patent survey. J Macromol Sci Rev Macromol Chem Phys 34:607–662CrossRefGoogle Scholar
  9. 9.
    Chin YR, Al-Dayel A, Acrylic acid based superabsorbent polymer, Process economics program review No 85-1-2, Stanford Research Institute, SRI International, Dec. 1985Google Scholar
  10. 10.
    Buchholz FL, Graham AT (1998) Modern superabsorbent polymer technology, Ch 1–7, WileyVCH, New YorkGoogle Scholar
  11. 11.
    Brannon-Peppas L, Harland RS (1990) Absorbent Polymer Technology, Ch 1–4, Elsevier, AmsterdamGoogle Scholar
  12. 12.
    Shalviri A, Liu Q, Abdekhodaie MJ, Wu XY (2010) Novel modified starch–xanthan gum hydrogels for controlled drug delivery: synthesis and characterization. Carbohydr Polym 79(4):898–907CrossRefGoogle Scholar
  13. 13.
    El-Sayed M, Sorour M, Abd El Moneem N, Talaat H, Shalaan H, El Marsafy S (2011) Synthesis and properties of natural polymers -grafted- acrylamide. World Appl Sci J 13(2):360–368Google Scholar
  14. 14.
    Straccia MC, d’Ayala GG, Romano I, Oliva A, Laurienzo P (2015) Alginate hydrogels coated with chitosan for wound dressing. Mar Drugs 13:2890–2908CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    El-Sayed M, Sorour M, El Moneem NA, Talaat H, Shalaan H, El Marsafy S (2013) Kinetics of Free Radical Grafting of Acrylamide onto a Blend of Starch/chitosan/alginate. Carbohydr Polym 98:460–464CrossRefPubMedGoogle Scholar
  16. 16.
    Benamer S, Mahlous M, Boukrif A, Mansouri B, Youcef SL (2006) Synthesis and characterization of hydrogels based on poly(vinyl pyrrolidone). Nuclear Instrum Methods Phys Recourses 12:284–290CrossRefGoogle Scholar
  17. 17.
    Güvena O, Sena M, Karadag E, Sarayd D (1999) A review on the radiation synthesis of copolymeric hydrogels for adsorption and separation purposes. Radiat Phys Chem 56:381–386CrossRefGoogle Scholar
  18. 18.
    Carenza M (1992) Recent achievements in the use of radiation polymerization and grafting for biomedical applications. Radiat Phys Chem 39:485Google Scholar
  19. 19.
    Pal K, Banthia AK, Majumdar DK (2009) Polymeric hydrogels: characterization and biomedical applications—a minireview. Design Monomers Polym 12:197–220CrossRefGoogle Scholar
  20. 20.
    Jin C, Zhou D, Liu H (1985) Huaxue Shijie 26(11):415 Chem. Abstr. 104 89575c 1986Google Scholar
  21. 21.
    Apichart H, Gobwute R, Chamnan R (2017) Preparation of hydroxyapatite hydrogel for bone-like materials via novel self-initiated photocatalytic polymerization. Mater Lett 193:142–145CrossRefGoogle Scholar
  22. 22.
    Chien-Chi Lin AT (2006) Metters hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 58:1379–1408CrossRefPubMedGoogle Scholar
  23. 23.
    Berlin Ad A, Kislenko VN (1992) Kinetics and mechanism of radical graft polymerization of monomers onto polysaccharides. Prog Polym Sci 17:765–825CrossRefGoogle Scholar
  24. 24.
    Brydon A, Burnett GM, Cameron GG (1974) Free-radical grafting of monomers to polydienes. II. Kinetics and mechanism of styrene grafting to polybutadiene. Journal of Polymer Science Polymer Chemistry Ed 12(5):1011–1021CrossRefGoogle Scholar
  25. 25.
    Lutfor Mr S, Silong WMdZWan, Yunus M, Zaki Ab, Rahman (2000) Mansor Ahmad, Md Jelas Haron, Kinetics and Mechanism of Free Radical Grafting of Methyl Acrylate onto Sago Starch. J Appl Polym Sci 77:784–791CrossRefGoogle Scholar
  26. 26.
    Enas M. Ahmed. H (2015) Preparation, characterization, and applications: a review. J Adv Res 6(2):105–121CrossRefGoogle Scholar
  27. 27.
    Maitra J, Shukla VK (2014) Crosslinking in hydrogels —a review american. J Polym Sci 4(2):25–31Google Scholar
  28. 28.
    Hennink WE, Nostrum CF van (2002) Department of Pharmaceutics, Utrecht University. Adv Drug Deliv Rev 54:13–36CrossRefPubMedGoogle Scholar
  29. 29.
    Yokoyama F, Masada I, Shimamura K, Ikawa T, Monobe K (1986) Morphology and structure of highly elastic poly(vinyl alcohol) hydrogel prepared by repeated freezing-and-melting. Colloid Polym Sci 264:595–601CrossRefGoogle Scholar
  30. 30.
    Christensen L, Breiting V, Vuust J, Hogdall E (2006) Adverse reactions following injection with a permanent facial filler polyacrylamide hydrogel (aquamid): causes and treatment. Eur J Plast Surg 28:464–471CrossRefGoogle Scholar
  31. 31.
    Gong CY, Shi S, Dong PW, Kan B, Gou ML, Wang XH et al (2009) Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel. Int J Pharm 365:8999CrossRefGoogle Scholar
  32. 32.
    Kim B, Peppas NA (2003) Poly(ethylene glycol)-containing hydrogels for oral protein delivery applications. Biomed Microdevices 5:333–341CrossRefGoogle Scholar
  33. 33.
    Lugao AB, Rogero SO, Malmonge SM (2002) Rheological behavior of irradiated wound dressing poly (vinyl pyrrolidone) hydrogels. Radiat Phys Chem 63:543–546CrossRefGoogle Scholar
  34. 34.
    Lipatov YS (2002) Polymer blends and interpenetrating polymer networks at the interface with solids. Progress Polym Sci 27:1721–1801CrossRefGoogle Scholar
  35. 35.
    Nilimanka D (2013) Preparation methods and properties of hydrogel: a review. Int J Pharm Pharm Sci 5(3):112–117Google Scholar
  36. 36.
    Sonali BD, Ganesh VD, Sandeep ST, Atul SB, Avinash PT, Hrishikesh AJ, Rajendra NP (2017) Hydrogel new trend in drug delivery system. Rev Eur J Pharm Med Res 4(1):503–512Google Scholar
  37. 37.
    Prinsy Rana G, Ganarajan, Kothiyal P (2015) Review on preparation and properties hydrogel formulation. World J Pharm Pharm Sci 4(12):1069–1087Google Scholar
  38. 38.
    Dwivedi S, Khatri P, Mehra GR, Kumar V (2001) Conceptual hydrogel-A, overview. Int J Pharm Biol Arch 2(6):1588–1597Google Scholar
  39. 39.
    Tsukasa M, Yuuki T, Sachiko A, Takahiko I, Akie H, Keiko E (2010) Role of boric acid for a poly (vinyl alcohol) film as a crosslinking agent: melting behaviors of the films with boric acid Polymer 51(23):5539–5549CrossRefGoogle Scholar
  40. 40.
    Kamoun EA, Kenawy ER, Chen X (2017) A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 8:217–233CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kawase M, Michibayashi N, Nakashima Y, Kurikawa N, Yagi K, Mizoguchi T (1997) Application of glutaraldehyde- crosslinked chitosan as a scaffold for hepatocyte attachment. Biol Pharm Bull 20(6):708–710CrossRefPubMedGoogle Scholar
  42. 42.
    Hongbo T, Yanping L (2012) Sun Min and Wang Xiguang preparation and property of crosslinking guar gum. Polym J 44:211–216CrossRefGoogle Scholar
  43. 43.
    López-Cebral R, Paolicelli P, Romero-Caamaño V, Seijo B, Casadei MA (2013) Sanchez ASpermidine-crosslinked hydrogels as novel potential platforms for pharmaceutical applications. J Pharm Sci 102(8):2632–2643CrossRefPubMedGoogle Scholar
  44. 44.
    Xu Xu Y, Weng Lu, Xu (2013) Hao Chen Sustained release of avastin® from polysaccharides crosslinked hydrogels for ocular drug delivery. Int J Biol Macromol 60:272–276CrossRefPubMedGoogle Scholar
  45. 45.
    Raut NS, Deshmukh PR, Umekar MJ, Kotagale NR (2013) Zinc crosslinked hydroxamated alginates for pulsed drug release. Int J Pharm Investig 3(4):194–202CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Taha MO, Nasser W, Ardakani A, Alkhatib HS (2008) Sodium lauryl sulfate impedes drug release from zinc-crosslinked alginate beads: switching from enteric coating release into biphasic profiles Int J Pharm 350(1–2):291–300. (Epub 2007 Sep 14)CrossRefPubMedGoogle Scholar
  47. 47.
    Coviello T, Grassi M, Lapasin R, Marino A, Alhaique F (2003) Scleroglucan/borax: characterization of a novel hydrogel system suitable for drug delivery. Biomaterials 24(16):2789–98CrossRefPubMedGoogle Scholar
  48. 48.
    Vinay MP, Navneet K, Dataset on the superabsorbent hydrogel synthesis with SiO2 nanoparticles and role in water restoration capability of agriculture soil, Dta In Brief,(2017) article in pressGoogle Scholar
  49. 49.
    Sherr AE, Swift AM (1965) Crosslinked polyacrylamide gel as a dehydrating agent. J Appl Polym Sci 99(12):3929–3934CrossRefGoogle Scholar
  50. 50.
    Abdel-Halim ES, Al-Deyab SS (2011) Hydrogel from crosslinked polyacrylamide/guar gum graft copolymer for sorption of hexavalent chromium ion Carbohydr Polym 86(3):1306–1312CrossRefGoogle Scholar
  51. 51.
    Marwa M, El-Sayed GhA, Al Bazedi MA, Abdel-Fatah (2017) Development of a novel hydrogel adsorbent for removal of reactive dyes from textile effluents. Res J Pharm Biol Chem Sci 8(3):945–955Google Scholar
  52. 52.
    Raneque MR, Rodriguez A, Carlos PC (2013) Hydrogel wound dressing preparation at laboratory scale by using electron beam and gamma radiation. Nucleus 53:24–31Google Scholar
  53. 53.
    Elizabeth PS, David QG, Briza NZ, Adriana GR, Maria GN, Jose MC (2008) Controlled release of model substances from ph-sensitive hydrogels. J Mexican Chem Soc 52(4):272–278Google Scholar
  54. 54.
    Oguz O, Vildan O (2002) Temperature sensitive poly(N-t-butylacrylamide-coacrylamide) hydrogels: synthesis and swelling behavior. Polymer 43:5017–5026CrossRefGoogle Scholar
  55. 55.
    Saleem MA, Azharuddin SK, Ali S, Patil CC (2010) Studies on different chitosan polyelectrolyte complex hydrogel for modified release of diltiazem hydrochlorid. Int J Pharm Pharm Sci 2(4):6467–6479Google Scholar
  56. 56.
    Jennifer JK, William FM (2008) Thermo-responsive hydrogels as a new ocular drug delivery platform to the posterior segment of the eye. Trans Am Ophthalmol Soc 106:206–214Google Scholar
  57. 57.
    Anseth KS, Aimetti AA, Machen AJ (2009) Poly(ethylene glycol) hydrogels formed by thiol-ene photopolymerization for enzymeresponsive protein delivery. Biomaterials 30(30):1–7Google Scholar
  58. 58.
    Diethelm J, Johanna B (2008) Electrochemically produced responsive hydrogel films: Influence of added salt on thickness and morphology. J Colloid Interface Sci 326:61–65CrossRefGoogle Scholar
  59. 59.
    Richard G, Jun C, Haesun P, Kinam P (2000) pH sensitive of fast responsive super porous hydrogels. J Biomater Sci Polym Edn 11(12):1371–1380CrossRefGoogle Scholar
  60. 60.
    Xuefeng Z, Hongrui J (2008) Tunable liquid microlens actuated by infrared light responsive hydrogel. Appl Phys Lett 93:151101–151113CrossRefGoogle Scholar
  61. 61.
    de Leede LGJ, de Boer AG, Ptirtzgen E (1986) Rate controlled rectal drug delivery in man with a hydrogel preparation. J Control Release 4:17–24CrossRefGoogle Scholar
  62. 62.
    Sundaram G, Tao W, Chunxiang C (2006) Swelling of pH-sensitive chitosan–poly (vinyl alcohol) hydrogels. J Appl Polym Sci 102:4665–4671CrossRefGoogle Scholar
  63. 63.
    Sudaxshina M (2003) Electro-responsive drug delivery from hydrogels. J Control Release 92:1–17CrossRefGoogle Scholar
  64. 64.
    Ruta M, Zuzana C, Zdenka S (2003) Stimuli-sensitive hydrogels in controlled and sustained drug delivery. Medicinal 39(2):19–24Google Scholar
  65. 65.
    Kristi SA, Alex AA, Alexandra JM (2009) Poly(ethylene glycol) hydrogels formed by thiol-ene photo-polymerization for enzyme responsive protein delivery. Biomaterials 30(30):1–7Google Scholar
  66. 66.
    Fariba G, Ebrahim VF (2009) Hydrogels in controlled drug delivery systems. Iran Polym J 18(1):63–88Google Scholar
  67. 67.
    Talaat H, Sorour M, Aboulnour A, Shalaan H (2008) Development of multi-component fertilizing hydrogel with relevant techno-economic indicators. Am Eurasian J Agric Environ Sci 3:764–770Google Scholar
  68. 68.
    Pairote K, Patchareeya K (2017) Research article superabsorbent polymer based on sodium carboxymethyl cellulose grafted polyacrylic acid by inverse suspension polymerization, Int J Polym Sci 2017:1–6Google Scholar
  69. 69.
    Laftah WA, Hashim S, Ibrahim AN (2011) Polymer hydrogels: a review. Polym Plastics Technol Eng 50:1475–1486CrossRefGoogle Scholar
  70. 70.
    Handbook Of Radical Polymerization (2002) Krzysztof Matyjaszewski Carnegie Mellon University, Pittsburgh, Pennsylvania. In: Davis TP. University of New South Wales. By John Wiley and Sons, Inc., Hoboken, SydneyGoogle Scholar
  71. 71.
    Hu Y, Daoud WA, Cheuk KKL, Lin CSK (2016) Newly developed techniques on polycondensation, ring-opening polymerization and polymer modification: focus on poly(lactic acid). Materials 9:133–147CrossRefPubMedCentralGoogle Scholar
  72. 72.
    Iwona G, Helena J (2010) Review: Synthetic polymer hydrogels for biomedical applications. Chem Chem Technol 4(4):297–304Google Scholar
  73. 73.
    Varghese JS, Chellappa N, Fathima NN (2014) Gelatin-carrageenan hydrogels: role of pore size distribution on drug delivery process. Colloids Surf B Bio interfaces 113:346–351CrossRefGoogle Scholar
  74. 74.
    Zunyang S, Feng L, Hui G, Yunfeng X, Quanjuan F, Dapeng L (2017) Combination of nisin and ε-polylysine with chitosan coating inhibits the white blush of fresh-cut carrots. Food Control 74:34–44CrossRefGoogle Scholar
  75. 75.
    Kamila S, Radosław AW, Alicja KO, Janusz MR, Piotr U (2017) Radiation synthesis of biocompatible hydrogels of dextran methacrylate, Radiat Phys Chem 142:115–120Google Scholar
  76. 76.
    Kumar A, Singh K, Ahuja M (2009) Xanthan-g-poly(acrylamide): microwave-assisted synthesis, characterization and in vitro release behavior Carbohydr Polym 76:261–267CrossRefGoogle Scholar
  77. 77.
    Ling H, Maolin Z, Jing P, Jiuqiang L, Genshuan W (2007) Radiation-induced degradation of carboxymethylated chitosan in aqueous solution. Carbohydr Polym 67(3):305–312CrossRefGoogle Scholar
  78. 78.
    Elif AB, Senem C, Murat K, Muruvvet Y (2011) Synthesis, characterization and in vitro antimicrobial activities of boron/starch/polyvinyl alcohol hydrogels. Carbohydr Polym 83(3):1377–1383CrossRefGoogle Scholar
  79. 79.
    Sanju F, Manmohan K, Lalit V (2004) Radiation synthesis of superabsorbent poly(acrylic acid)–carrageenan hydrogels. Radiat Phys Chem 69(6):481–486CrossRefGoogle Scholar
  80. 80.
    Taghizadeh M, Mehrdad A (2006) Kinetic study of graft polymerization of acrylic acid and ethyl methacrylate onto starch by ceric ammonium nitrate. Iranian J Chem Chem Eng 25:1–11Google Scholar
  81. 81.
    Sorour MH, El Sayed MM, Abd El Moneem NM, Talaat HA, Shaalan HF, El Marsafy SM (2013) Process and financial considerations pertinent to hydrogel manufacture. Starch 65(5–6):527–534CrossRefGoogle Scholar
  82. 82.
    Wissam F, Richard V, Nathalie M, Mohamed T, Frederic B, Ali A (2017) Polysaccharides and lignin based hydrogels with potential pharmaceutical use as a drug delivery system produced by a reactive extrusion process, Int J Biol Macromol 104:564–575Google Scholar
  83. 83.
    Charoen N, Toha W, Azizon K, Suda K (2010) Preparation of cassava starch-graft-polyacrylamide superabsorbents and associated composites by reactive blending. Carbohydr Polym 81(2):348–357CrossRefGoogle Scholar
  84. 84.
    Willett J, Finkenstadt V (2006) Initiator effects in reactive extrusion of starch–polyacrylamide graft copolymers. J Appl Polym Sci 99:52–58CrossRefGoogle Scholar
  85. 85.
    Victoria L, Julious L (2005) Reactive extrusion of starch-polyacrylamide graft copolymers: effects of monomer/starch ratio and moisture content. Macromol Chem Phys 206:1648–1652CrossRefGoogle Scholar
  86. 86.
    Jadranka ŽK, Aleksandra NR, Milica V (2017) Gamma irradiation induced in situ synthesis of lead sulfide nanoparticles in poly(vinyl alcohol) hydrogel. Radiat Phys Chem 130:282–290CrossRefGoogle Scholar
  87. 87.
    Singh V, Tiwari A, Pandey S, Singh SK (2007) Peroxydisulfate initiated synthesis of potato starch-graft-poly(acrylonitrile) under microwave irradiation. Express Polym Lett 1(1):51–58CrossRefGoogle Scholar
  88. 88.
    Nuchter M, Ondruschka B, Bonrath W, Gum A (2004) Microwave assisted synthesis—a critical technology overview. Green Chem 6:128–141CrossRefGoogle Scholar
  89. 89.
    Singh V, Tripathi D, Tiwari A, Sanghi R (2005) Microwave promoted synthesis of chitosan-graft-polyacrylonitrile. J Appl Polym Sci 95:820–825CrossRefGoogle Scholar
  90. 90.
    Singh V, Tiwari A, Pandey S, Kumar S (2006) Microwave-accelerated synthesis and characterization of potato starch-g-polyacrylamide. Starch/Stärke 58:536–543CrossRefGoogle Scholar
  91. 91.
    Singh V, Tiwari A, Pandey S, Singh SK (2006) Microwave accelerated synthesis and characterization of potato starch-g-polyacrylamide. Starch-Starke 58:536–543CrossRefGoogle Scholar
  92. 92.
    Singh V, Tiwari A, Tripathi DN, Sanghi R (2004) Microwave assisted synthesis of guar-g-polyacrylamide. Carbohydr Polym 58:1–6CrossRefGoogle Scholar
  93. 93.
    Singh V, Tripathi D, Tiwari A, Sanghi R (2006) Microwave synthesized chitosan-graft-poly (methylmethacrylate): an efficient Zn2CI binder Carbohydr Polym 65:35–41CrossRefGoogle Scholar
  94. 94.
    Singh V, Tiwari A, Pandey S, Singh S (2007) Peroxydisulfate initiated synthesis of potato starch-graft-poly(acrylonitrile) under microwave irradiation. Express Polym Lett 1(1):51–58CrossRefGoogle Scholar
  95. 95.
    Kyung H, Ning L, Gang S (2009) ,UV-induced graft polymerization of acrylamide on cellulose by using immobilized benzophenone as a photo-initiator. Eur Polymer J 45:2443–2449CrossRefGoogle Scholar
  96. 96.
    Jenkins D, Hudson S (2001) Review of vinyl graft copolymerization featuring recent advances toward controlled radical-based reactions and illustrated with chitin/chitosan trunk polymers. Chem Rev 101:3245–3273CrossRefPubMedGoogle Scholar
  97. 97.
    Lee J, Kumar R, Rozman H, Azemi B (2005)”Pasting, swelling and solubility properties of UV initiated starch-graft-poly(AA)”. Food Chem 91:203–211CrossRefGoogle Scholar
  98. 98.
    Mubarak A, Bhattacharia S, Kader M, Bahari K (2006) Preparation and characterization of ultra violet (UV) radiation cured bio-degradable films of sago starch/PVA blend. Carbohydr Polym 63:500–506CrossRefGoogle Scholar
  99. 99.
    Hedin J, Otlund A, Nyden M (2010) UV induced cross-linking of starch modified with glycidyl methacrylate. Carbohydr Polym 79:606–613CrossRefGoogle Scholar
  100. 100.
    Taghizadeh M, Mafakhery S (2001) Kinetics and mechanism of graft polymerization of acrylonitrile onto starch initiated with potassium persulfate. J Sci Islamic Republic of Iran 12:333–338Google Scholar
  101. 101.
    Lavallee C, Lemay G, Leborgne A, Spassky N, Robert E (1984) Prud’homme, synthesis and polymerization of racemic and optically active β-monosubstituted β-propiolactones. Macromolecules 17:2512–2526CrossRefGoogle Scholar
  102. 102.
    Liming Z, Jianping G, Ruchuan T, Jiugao Y, Wei W (2003) Graft mechanism of acrylonitrile onto starch by potassium permanganate. J Appl Polym Sci 88:146–152CrossRefGoogle Scholar
  103. 103.
    Athawale V, Rathi S (1999) Polymer reviews publication details, including instructions for authors and subscription information: graft polymerization: starch as a model substrate. Polym Rev 39(3):445–480Google Scholar
  104. 104.
    Taghizadeh M, .Khosravy M (2003) Kinetics and mechanism of graft copolymerization of vinyl monomers (acrylamide, acrylic acid, and methacrylate) onto starch by potassium dichromate as redox initiator. Iran Polym J 12:497–505Google Scholar
  105. 105.
    Taghizadeh M, Mafakhery S (2001) Kinetics and mechanism of graft polymerization of acrylonitrile onto starch initiated with potassium persulfate. J Sci Iranian Polym J 12:333–338Google Scholar
  106. 106.
    Gugliemelli LA, Swanson CL, Doane WM (1973) Kinetics of grafting acrylonitrile onto starch. J Polym Sci Polym Chem Ed 11(10):2451–2465CrossRefGoogle Scholar
  107. 107.
    Mingzhu L, Rongshi C, Jingjia W, Cheng M (1993) Graft copolymerization of methyl acrylate onto potato starch initiated by ceric ammonium nitrate. J Polym Sci Part A Polym Chem 31(13):3181–3186CrossRefGoogle Scholar
  108. 108.
    Pan S, Li G, Wang Z, Wang Z (1994) Polymerization: starch as a model substrate. Shiyuo Huagong 22(3):177–189Google Scholar
  109. 109.
    Sandle NK, Singh OP, Verma IK (1987) Graft copolymerization of starch with alkylene methacrylates. Die Angewandte Makromolecular Chemis 154(1):87–97.
  110. 110.
    Egboh SHO, Jinadu B, Egboh SHO, Jinadu B (1988) Angew Makromol Chem 163:93. Angew Makromol Chem 1988; 163:93–99CrossRefGoogle Scholar
  111. 111.
    Cutié SS, Smith PB, Henton DE, Staples TL, Powell C (1997) Acrylic acid polymerization kinetics. J Polym Sci 35(13):2029–2047CrossRefGoogle Scholar
  112. 112.
    Berlin Ad A, Kislenko VN (1992) Kinetics and mechanism of radical graft polymerization of monomers on to polysaccharides. Progress Polym Sci 17:765–825CrossRefGoogle Scholar
  113. 113.
    Lili W, Yongshen X (2006) Graft copolymerization kinetics of ethyl acrylate onto hydroxypropyl methylcellulose using potassium persulphate as initiator in aqueous medium. Iran Polym J 15(6):467–475Google Scholar
  114. 114.
    Kislenko VN (1999) Kinetics of particle formation at the graft polymerization of methylacrylate onto hydroxyethyl cellulose. J Colloid Interface Sci 209(1):136–141CrossRefPubMedGoogle Scholar
  115. 115.
    Abdelgawad R, George O (1977) Kinetics of diffusion-free radiation graft polymerization of styrene onto polyethylene. J Polym Sci 15(2):468–488Google Scholar
  116. 116.
    Huacai Ge, Wang S (2014) Thermal preparation of chitosan-acrylic acid superabsorbent: Optimization, characteristics and water absorbency. Carbohydr Polym 113:296–303CrossRefPubMedGoogle Scholar
  117. 117.
    Nada MAA, Alkady MY, Fekry HM (2007) Synthesis and characterization of grafted cellulose for use in water and metal ions sorption, BioResources 3(1):46–50Google Scholar
  118. 118.
    Lutfor MR, Haron ASidik,J, Rahman MZA, Ahmed M (2003) Modification of sago starch by graft copolymerization. Effect of reaction conditions on grafting parameters. Int J Polym Mater 52:189–201CrossRefGoogle Scholar
  119. 119.
    Singha V, Tiwaria A, Narayan DT, Sanghib R (2004) Microwave assisted synthesis of Guar-g-polyacrylamide. Carbohydr Polym 58:1–6CrossRefGoogle Scholar
  120. 120.
    Athawale VD, Lele V (2000) Syntheses and characterisation of graft copolymers of maize starch and methacrylonitrile. Carbohydr Polym 41:407–416CrossRefGoogle Scholar
  121. 121.
    Jianping G, Jiugao Y, Wei W, Liming C, Ruchuan T (1998) Graft copolymerization of starch–AN initiated by potassium permanganate. J Appl Polym Sci 68:1965–1972CrossRefGoogle Scholar
  122. 122.
    Fares MM, El-faqeeh AS, Osman ME (2003) Graft copolymerization onto starch–I. Synthesis and optimization of starch grafted with N-tert-butylacrylamide copolymer and its hydrogels. J Polym Res 10:119–125CrossRefGoogle Scholar
  123. 123.
    Hashem A, Afifi MA, El-Alfy EA, Hebeish A (2005) Synthesis, characterization and saponification of poly (AN)-starch composites and properties of their hydrogels. Am J Appl Sci 2(3):614–621CrossRefGoogle Scholar
  124. 124.
    Sugahara Y, Ohta T (2001) Synthesis of starch graft-polyacrylonitrile hydrolyzate and its characterization. J Appl Polym Sci 82:1437–1443CrossRefGoogle Scholar
  125. 125.
    Hwang TS, Park JW (2003) UV-induced graft polymerization of polypropylene-g-glycidyl methacrylate membrane in the vapor phase. Macromol Res 11(6):,495–500CrossRefGoogle Scholar
  126. 126.
    Suetoh Y, Shibayama M (2000) Effects of non-uniform solvation on thermal response in poly(Nisopropylacrylamide) gels. Polymer 41:505–510CrossRefGoogle Scholar
  127. 127.
    Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, IthacaGoogle Scholar
  128. 128.
    da Silva DA, de Paula RC, Feitosa JPA (2007) Graft copolymerization of acrylamide onto cashew gum. Eur Polym J 43:2620–2629CrossRefGoogle Scholar
  129. 129.
    Toti U, Aminabhavi TM (1994) Modified guar gum matrix tablet for controlled release of diltiazem hydrochloride. J Control Release 95:567–577CrossRefGoogle Scholar
  130. 130.
    Deshmukj SR, Singh RP (1987) Drag reduction effectiveness, shear stability and biodegradation resistance of guar gum based graft copolymers. J Appl Polym Sci 33:1963–1975CrossRefGoogle Scholar
  131. 131.
    Behari K, Pandey PK, Kumar R, Taunk K (2001) Graft copolymerization of acrylamide onto xanthan gum. Carbohydr Polym 46:185–189CrossRefGoogle Scholar
  132. 132.
    Toti US, Soppimath KS, Mallikarjuna NN, Aminabhavi TM (2004) Acrylamide grafted acacia gum polymer matrix tablets as erosion-controlled drug delivery systems. J Appl Polym Sci 93:2245–2253CrossRefGoogle Scholar
  133. 133.
    Tripathy T, Singh RP (2001) Characterization of polymeracrylamide-grafted sodium alginate: a novel polymeric flocculent. J Polym Sci 81:3296–3308Google Scholar
  134. 134.
    Singh V, Tiwari A, Tripathi DN, Sanghi R (2006) Microwave enhance synthesis of chitosan-grafted polyacrylamide. Polymer 47:245–260Google Scholar
  135. 135.
    Zhenxia Z, Zhong L, Qibin X, Hongxia X, Yuesheng L (2008) Fast synthesis of temperature-sensitive PNIPAAm hydrogels by microwave irradiation. Eur Polym J 44:1217–1224CrossRefGoogle Scholar
  136. 136.
    Varma IK, Singh OP, Sandle NK (1983) Graft-copolymerization of starch with acrylamide, I. Die Angewandte Macromol Chem 119:I83–I192Google Scholar
  137. 137.
    Aykut E, Monica O, de la Cruz (2015) Energy conversion in polyelectrolyte hydrogels. ACS Macro Let 4(8):857–886CrossRefGoogle Scholar
  138. 138.
    Athawale VD, Vidyagauri M (1998) Graft copolymerization onto starch 3: grafting of acrylamide using ceric ion initiation and preparation of its hydrogels. Starch 50(10):426–431CrossRefGoogle Scholar
  139. 139.
    Hou K, Wang H, Lin Y, Chen S, Yang S, Cheng Y, Hsiao BS, Zhu M (2016) Large scale production of continuous hydrogel fibers with anisotropic swelling behavior by dynamic-crosslinking-spinning. Macromol Rapid Commun 37:1795–1801CrossRefPubMedGoogle Scholar
  140. 140.
    Gavin TP, Sinnott RK (2008) Chemicalengineeringdesign: principles, practice and economics of plant and process design. Elsevier Science & Technology, ButterworthHeinemann, p 313Google Scholar
  141. 141.
    Maaly MAK, Azza IH, Hanaa MA, Ahmed IW, Techno-economic investigation for production of innovative hydrogel as superabsorbent polymer, 7(3), (2016), 2689–2700Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemical Engineering & Pilot Plant DepartmentNational Research CentreGizaEgypt

Personalised recommendations