Evaluation of Mechanical and Physical Properties of Hybrid Composites from Food Packaging and Textiles Wastes

  • Tamer Hamouda
  • Ahmed H. Hassanin
  • Naheed Saba
  • Mustafa Demirelli
  • Ali Kilic
  • Zeki Candan
  • Mohammad JawaidEmail author
Original Paper


In the present work, hybrid composites were designed by using shredded Tetra Pak packages as food packaging wastes and wool yarn wastes as textiles wastes for potential alternative construction and building materials. Hybrid composites were fabricated by mixing different ratios (0, 5, 10, 15 and 20 wt%) of wool yarn wastes with shredded Tetra Pak wastes. Mechanical properties in terms of flexural, tensile strength, internal bonding (IB) in addition to the impact properties and physical properties in terms of thickness swelling (TS), water absorption (WA) and density of the fabricated composites were analyzed and compared with the properties of commercial wood particleboards. Results showed that when the ratios of wool yarn wastes increased to 15% in hybrid composites, modulus of rupture value reached 15.10 ± 1.01 MPa which is higher than that of particleboards (types P2, P4, and P6 as per the British Standards—BS). The highest IB strength was found to be 0.60 MPa for the hybrid composites with 10% wool yarn content, while IB values of the other samples reduced with increasing the amount of wool yarn wastes. Moreover, TS and WA of the fabricated hybrid composites were found to be better than commercial particleboards and they also encountered the minimum strength requirements in BS. Overall, we concluded that the developed hybrid composites from agro-industrial waste materials could be utilized as promising alternative source of raw materials to manufacture value added eco-friendly, advanced and sustainable structural applications such as wood panels.


Solid wastes Tetra Pak Wool yarn wastes Hybrid composites Mechanical properties Structural applications 



Authors are thankful to the TUBITAK, Turkey for supporting this research finding through Grant No. 21514107-216.01-237755 and also extend their appreciation to EKOPAN and Yunsa Companies for providing required raw materials and Kastamonu Wood Industry for the fruitful discussions.


  1. 1.
    Hristozov D, Wroblewski L, Sadeghian P (2016) Composites B 95:82–95CrossRefGoogle Scholar
  2. 2.
    Otto GP, Moisés MP, Carvalho G, Rinaldi AW, Garcia JC, Radovanovic E, Fávaro SL (2017) Composites B 110:459–465CrossRefGoogle Scholar
  3. 3.
    Khanjanzadeh H, Bahmani AA. Rafighi A. Tabarsa T (2012) Afr J Biotechnol 11(31):8045–8050Google Scholar
  4. 4.
    Lykidis C, Grigoriou A, Barboutis I (2014) Wood Mater Sci Eng 9(4):202–208CrossRefGoogle Scholar
  5. 5.
    Sassoni E, Manzi S, Motori A, Montecchi M, Canti M (2014) Energy Build 77:219–226CrossRefGoogle Scholar
  6. 6.
    Madurwar MV, Ralegaonkar RV, Mandavgane SA (2013) Cons Buil Mater 38:872–878CrossRefGoogle Scholar
  7. 7.
    Safiuddin MD, Jumaat MZ, Salam MA, Islam MS, Hashim R (2010) Int J Phys Sci 5(13):1952–1963Google Scholar
  8. 8.
    Suhaily SS, Jawaid M, Abdul Khalil HPS (2012) BioResources 7(3):4400–4423Google Scholar
  9. 9.
    Tetrapak global site. Tetra Pak International S.A. Accessed 24 April 2015
  10. 10.
    TetraPak. Tetra Pak 2014 Sustainability update. Tetra Pak International S.A. Accessed 24 April 2015
  11. 11.
    Yılgör N, Kartal SN, Houtman C, Terzi E, Kantur A, Köse C, Piskin S (2014) BioResources 9(3):4784–4807Google Scholar
  12. 12.
    Lopes CMA, Felisberti MI (2006) J Appl Polym Sci 101(5):3183–3191CrossRefGoogle Scholar
  13. 13.
    Nurhazwani O, Jawaid M, Tahir PMd, Juliana Abdul AH, Hamid S (2016) BioResources 11(1):306–323Google Scholar
  14. 14.
    Abdul Khalil HPS, Nur Firdaus MY, Jawaid M, Anis M, Rizduan R, Mohammad AR (2010) Mater Des 31(9):4229–4236CrossRefGoogle Scholar
  15. 15.
    Abdul Khalil HPS, Nurul Fazita MR, Bhat AH, Jawaid M, Nik Fuad NA (2010) Mater Des 31(1):417–424CrossRefGoogle Scholar
  16. 16.
    Paridah MT, Halip AH, El-Shekeil YA, Jawaid M, Othman A (2014) Measurement 56:70–80CrossRefGoogle Scholar
  17. 17.
    Buyuksari U, Ayrilmis N, Avci E, Koc E (2010) Bioresource Technol 101(1):255–259CrossRefGoogle Scholar
  18. 18.
    Bektas I, guler C, Kalaycioğlu H, Mengeloglu F, Nacar M (2005) J Compos Mater 39(5):467–473CrossRefGoogle Scholar
  19. 19.
    Nadhari W, Hashim R, Hiziroglu S, Sulaiman O, Boon J, Salleh KM, Awalludin MF, Sato M, Sugimoto T (2014) Measurement 50(1):250–254CrossRefGoogle Scholar
  20. 20.
    Rathke J, Sinn G, Konnerth J, Müller U (2012) Materials 5:1115–1124CrossRefGoogle Scholar
  21. 21.
    312:2010, BS EN (2010) European Standardization CommitteeGoogle Scholar
  22. 22.
    Saari N, Hashim R, Sulaiman O, Hiziroglu S, Sato M, Sugimoto T (2014) Composites B 56:344–349CrossRefGoogle Scholar
  23. 23.
    Nayeri MD, Tahir PMd, Jawaid M, Ashaari Z, Abdullah LC, Bakar ES, Namvar F (2014) BioResources 9(2):2372–2381CrossRefGoogle Scholar
  24. 24.
    Moubarik A, Mansouri HR, Pizzi A, Allal A, Charrier F, Badia MA et al (2013) Composites B 44(1):48–51CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Textile Research DivisionNational Research CentreDokkiEgypt
  2. 2.Department of Textile EngineeringAlexandria UniversityAlexandriaEgypt
  3. 3.Biocomposite Technology Laboratory, INTROPUniversiti Putra MalaysiaSerdangMalaysia
  4. 4.Department of Chemistry, Faculty of Arts and SciencesYildiz Technical UniversityIstanbulTurkey
  5. 5.TEMAG Labs, Faculty of Textile Technology and DesignIstanbul Technical UniversityIstanbulTurkey
  6. 6.Department of Forest Products Engineering, Faculty of ForestryIstanbul UniversityIstanbulTurkey

Personalised recommendations