Advertisement

Design and Characterization of Novel Potentially Biodegradable Triple-Shape Memory Polymers Based on Immiscible Poly(l-lactide)/Poly(ɛ-caprolactone) Blends

  • Fatemeh Khademeh Molavi
  • Ismaeil GhasemiEmail author
  • Massimo Messori
  • Masoud Esfandeh
Original Paper
  • 29 Downloads

Abstract

In this study, covalently cross-linked network strategy has been applied to prepare new triple-shape memory polymers (TSPs) based on poly(l-lactide) (PLA)/poly(ɛ-caprolactone) (PCL) blends. The TSPs were fabricated by adding di-cumyl peroxide, with triallyl isocyanurate as a coagent for performing the cross-linking reaction. The differential scanning calorimetry (DSC) analysis demonstrated that all the PLA/PCL blends show two melting points (Tm,PCL and Tm,PLA), which can be employed as the transition temperature (Ttrans) to induce triple-shape memory behavior. The scanning electron microscopy (SEM) analysis indicated that there are two immiscible morphologies: co-continuous structure and matrix-droplet. The influence of temperature on the crystalline phase changes was analyzed by X-ray diffraction at various temperatures. The results revealed that during the heating–cooling cycle, the degree of crystallinity decreased when the temperature increased and at higher temperature, the crystallization peaks of PCL disappeared. Multiple thermal–mechanical tests were performed and the results showed that the composition ratio of the two phases plays an important role in the triple-shape memory behavior. The results confirmed that the excellent shape memory behavior was obtained for the sample containing 50 wt% PCL.

Keywords

Triple-shape memory polymer Smart materials Potentially biodegradable blend Thermo-mechanical cycle Transition temperature 

Notes

References

  1. 1.
    Lendlin A, Kelch S (2002) Angew Chem Int Ed 41:2034CrossRefGoogle Scholar
  2. 2.
    Liu C, Qin H, Mather PT (2007) J Mater Chem 17:1543CrossRefGoogle Scholar
  3. 3.
    Abdallah-Elhirtsi S, Fitoussi J, Rashmi BJ, Prashantha K, Farzaneh S, Lacrampe MF, Krawczak P, Tcharkhtchi (2015) Polym Compos 36:1145CrossRefGoogle Scholar
  4. 4.
    Memarian F, Fereidoon A, Ahangari MG, Khonakdar HA (2017) Polym Compos.  https://doi.org/10.1002/pc.24387 Google Scholar
  5. 5.
    Rousseau IA (2008) Polym Eng Sci 48:2075CrossRefGoogle Scholar
  6. 6.
    Lei M, Yu K, Lu H, Qi HJ (2017) Polymer 109:216CrossRefGoogle Scholar
  7. 7.
    Bae CY, Park JH, Kim EY, Kim BK (2011) J Mater Chem 21:11288CrossRefGoogle Scholar
  8. 8.
    Voit W, Ware T, Dasari RR, Smith P, Danz L, Simon D, Barlow S, Marder SR, Gall K (2010) Adv Funct Mater 20:162CrossRefGoogle Scholar
  9. 9.
    Zhang S, Yu Z, Govender T, Luo H, Li B (2008) Polymer 49:3205CrossRefGoogle Scholar
  10. 10.
    Raquez JM, Vanderstappen S, Meyer F, Verge P, Alexandre M, Thomassin JM, Jerome C, Dubois P (2011) Chem Eur J 17:10135CrossRefGoogle Scholar
  11. 11.
    Ortega AM, Yakacki CM, Dixon SA, Likos R, Greenberg AR, Gall K (2012) Soft Matter 8:7381CrossRefGoogle Scholar
  12. 12.
    Samuel C, Barrau S, Lefebvre JM, Raquez JM, Dubois P (2014) Macromolecules 47:6791CrossRefGoogle Scholar
  13. 13.
    Wang WS, Ping P, Chen XS, Jing XB (2006) Eur Polym J 42:1240CrossRefGoogle Scholar
  14. 14.
    Pilate F, Mincheva R, Winter JD, Gerbaux P, Wu L, Todd R, Raquez JM, Dubois P (2014) Chem Mater 26:5860CrossRefGoogle Scholar
  15. 15.
    Zhang J, Wu G, Huang C, Niu Y, Chen C, Chen Z, Yang K, Wang Y (2012) J Phys Chem C 116:5835CrossRefGoogle Scholar
  16. 16.
    Zhang MQ, Yang KK, Wang YZ (2015) Chin Chem Lett 26:1221CrossRefGoogle Scholar
  17. 17.
    Zhang T, Wen Z, Hui Y, Yang K, Zhou Q, Wang Y (2015) Polym Chem 6:4177CrossRefGoogle Scholar
  18. 18.
    Pretsch T (2010) Smart Mater Struct 19:015006CrossRefGoogle Scholar
  19. 19.
    Behl M, Lendlein A (2010) J Mater Chem 20:3335CrossRefGoogle Scholar
  20. 20.
    Bellin I, Kelch S, Langer R, Lendlein A (2006) Proc Natl Acad Sci USA 103:18043CrossRefGoogle Scholar
  21. 21.
    Xie T (2011) Polymer 52:4958Google Scholar
  22. 22.
    Zotzmann J, Behl M, Feng YK, Lendlein A (2010) Adv Funct Mater 20:3583CrossRefGoogle Scholar
  23. 23.
    Ahn SK, Kasi RM (2011) Adv Funct Mater 21:4543CrossRefGoogle Scholar
  24. 24.
    Ware T, Hearon K, Lonnecker A, Wooley KL, Maitland DJ, Voit W (2012) Macromolecules 45:1062CrossRefGoogle Scholar
  25. 25.
    Xie T, Page AK, Eastman SA (2011) Adv Funct Mater 21:2057CrossRefGoogle Scholar
  26. 26.
    Xie T (2010) Nature 464:267CrossRefGoogle Scholar
  27. 27.
    Li J, Liu T, Pan Y, Xia S, Zhang Z, Ding X, Peng Y (2012) Macromol Chem Phys 213:2246CrossRefGoogle Scholar
  28. 28.
    Mohanty AK, Misra M, Hinrichsen G (2000) Macromol Mater Eng 276–277:1CrossRefGoogle Scholar
  29. 29.
    Mohanty AK, Misra M, Drzal LT (2002) J Polym Environ 10:19CrossRefGoogle Scholar
  30. 30.
    Dipa R, Sarkar BK (2001) J Appl Polym Sci 80:1013CrossRefGoogle Scholar
  31. 31.
    Sen T, Reddy HN (2013) Adv Mater Sci Eng 2013:1Google Scholar
  32. 32.
    Liao HT, Wu CS (2009) Mater Sci Eng A 515:207CrossRefGoogle Scholar
  33. 33.
    Yeh JT, Wu CJ, Tsou CH, Chai WL, Chow JD, Huang CY, Chen KN, Wu CS (2009) Polym Plast Technol Eng 48:571CrossRefGoogle Scholar
  34. 34.
    Radusch HJ, Kolesov I, Gohs U, Heinrich G (2012) Macromol Mater Eng 297:1225CrossRefGoogle Scholar
  35. 35.
    Wu D, Lin D, Zhang J, Zhou W, Zhang M, Zhang Y, Wang D, Liu B (2011) Macromol Chem Phys 212:613CrossRefGoogle Scholar
  36. 36.
    Zhang H, Wang H, Zhong W, Du Q (2009) Polymer 50:1596CrossRefGoogle Scholar
  37. 37.
    Xie H, Cheng CY, Du L, Fan CJ, Deng XY, Yang KK (2016) Macromolecules 49:3845CrossRefGoogle Scholar
  38. 38.
    Zhao Q, Qi HJ, Xie T (2015) Prog Polym Sci 49–50:79CrossRefGoogle Scholar
  39. 39.
    Quynh TM, Mitomo H, Nagasawa N, Wada Y, Yoshii F, Tamada M (2007) Eur Polym J 43:1779CrossRefGoogle Scholar
  40. 40.
    Bai H, Liu H, Bai D, Zheng Q, Wang K, Deng H, Chen F, Fu Q (2014) Polym Chem 5:5985CrossRefGoogle Scholar
  41. 41.
    Li SC, Liu H, Zeng W (2011) J Appl Polym Sci 121:2614CrossRefGoogle Scholar
  42. 42.
    Yang SL, Wu ZH, Yang W, Yang MB (2008) Polym Test 27:957CrossRefGoogle Scholar
  43. 43.
    Shayan M, Azizi H, Ghasemi I, Karrabi M (2015) Carbohydr Polym 124:237CrossRefGoogle Scholar
  44. 44.
    Androsch R, Wundelich B (2005) Polymer 46:12556CrossRefGoogle Scholar
  45. 45.
    Delpouve N, Delbreilh L, Stoclet G, Saiter A, Dargent E (2014) Macromolecules 47:5186CrossRefGoogle Scholar
  46. 46.
    Righetti MC, Tombari E (2011) Thermochim Acta 522:118CrossRefGoogle Scholar
  47. 47.
    Brizzolara D, Cantow HJ, Diederichs K, Keller E, Domb AJ (1996) Macromolecules 29:191CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Polymer ProcessingIran Polymer and Petrochemical InstituteTehranIran
  2. 2.Department of Engineering “Enzo Ferrari”University of Modena and Reggio EmiliaModenaItaly

Personalised recommendations