Journal of Polymers and the Environment

, Volume 27, Issue 5, pp 929–941 | Cite as

Synthesis of β-Cyclodextrin Immobilized Starch and Its Application for the Removal of Dyestuff from Waste-Water

  • H. Zhang
  • Y. X. Li
  • P. L. Wang
  • Y. ZhangEmail author
  • B. W. ChengEmail author
  • Q. M. Sun
  • F. Li
Original Paper


A natural polymeric adsorbent, β-cyclodextrin immobilized starch (CS-βCD) was prepared by introducing host functional molecule β-cyclodextrin (β-CD) onto starch in presence of citric acid. The immobilization conditions were optimized to: m CA:m CS = 1:2, reaction time of 2 h and reaction temperature at 120 °C, by varying the input levels of the reactant, CS-βCD with a series of immobilization ratio (IR) and carboxyl content (CC) could be obtained. The FT-IR and 13C-NMR analysis indicated the β-CD molecules have been immobilized onto starch via the formation of ester linkages. The XRD and SEM analysis showed CS-βCD had more looser structure and more irregular surface compared with native starch. The GPC analysis showed CS-βCD had a reduced molecular weight but a more complicated molecular configuration. The adsorbing capacities of CS-βCD to three cationic dyes (methylene blue, methyl purple and basic fuchsin) were significantly improved compared with native starch, diatomite and zeolite. The adsorption behaviors of CS-βCD to the three dyes had high fitting degrees to both Langmuir and Freundlich models (R2 > 0.98). The decolourization ratio of CS-βCD to the mixed dyestuff waste-water had reached 88.75%, which was much higher than other absorbents. The results indicated the CS-βCD would become a high-efficiency dyestuff adsorbent, and would have a promising application in the industrial dyestuff waste-water treatment.


Dyestuff waste-water Cyclodextrin Immobilization Natural polymeric absorbent Starch 



This work was funded by the National Natural Science Foundation of China (No. 51503147), the National Undergraduate Innovation Program (No. 201610058024), the National Modern Agricultural Technology System Special Projects (No. CARS-43-E-2) and the National Key R&D Program of China (No. 2016YFB0303300).


  1. 1.
    Xu XR, Li XZ (2010) Sep Purif Technol 72:105–111CrossRefGoogle Scholar
  2. 2.
    Verma AK, Dash RR, Bhunia P (2012) J Environ Manag 93:154–168CrossRefGoogle Scholar
  3. 3.
    Said EAA, Aly AAM, Goda MN, Abd El-Aal M, Abdelazim M (2017) J Polym EnvironGoogle Scholar
  4. 4.
    Babuponnusami A, Muthukumar K (2014) J Environ Chem Eng 2:557–572CrossRefGoogle Scholar
  5. 5.
    Garg VK, Amita M, Kumar R, Gupta R (2004) Dyes Pigm 63:243–250CrossRefGoogle Scholar
  6. 6.
    Shen D, Liu J, Gan L, Huang N, Long M (2017) J Polym Environ 2:1–9Google Scholar
  7. 7.
    Travlou NA, Kyzas GZ, Lazaridis NK, Deliyanni EA (2013) Chem Eng J 217:256–265CrossRefGoogle Scholar
  8. 8.
    Juang R, Tseng R, Wu F, Lee S (2010) J Chen Technol Biot 70:391–399CrossRefGoogle Scholar
  9. 9.
    Ngah WW, Ngah LC, Hanafiah MAK (2011) Carbohydr Polym 83:1446–1456CrossRefGoogle Scholar
  10. 10.
    Janaki V, Vijayaraghavan K, Oh BT, Lee KJ, Muthuchelian K, Ramasamy AK (2012) Carbohydr Polym 90:1437CrossRefGoogle Scholar
  11. 11.
    Crini G, Janus L, Morcellet M, Torri G, Naggi A, Bertini S (2015) J Appl Poly Sci 69:1419–1427CrossRefGoogle Scholar
  12. 12.
    Inoue Y, Suzuki K, Ezawa T, Murata I, Yokota M, Tokudome Y (2015) J Inclusion Phenom Macrocyclic Chem 83:289–298CrossRefGoogle Scholar
  13. 13.
    Wang W, Deng Y, Zhang L, Fu J, Lu Z, Xu L (2012) J Nanosci Nanotechnol 12:7206–7210CrossRefGoogle Scholar
  14. 14.
    He Q, Wu W, Xiu K, Zhang Q, Xu F, Li J (2013) Int J Pharm 443:110–119CrossRefGoogle Scholar
  15. 15.
    Zhou K, Li Y, Li Q, Du Q, Xia Y (2018) J Polym Environ 26(8):1–9CrossRefGoogle Scholar
  16. 16.
    Goh KM, Mahadi NM, Hassan O, Illias RM (2015) J Mol Catal B 49:118–126CrossRefGoogle Scholar
  17. 17.
    Wang YF, Shao JJ, Wang ZL, Lu ZX (2012) Food Res Int 49:641–647CrossRefGoogle Scholar
  18. 18.
    Weirong Y, Huiyuan Y (2015) Starch/Starke 54:260–263CrossRefGoogle Scholar
  19. 19.
    Gouda AA, El-Sayed MIK, Amin AS, Sheikh RE (2013) Arab J Chem 6:145–163CrossRefGoogle Scholar
  20. 20.
    Malm C, Kim H, Wagner M, Hunger J (2017) Chem 23(45)Google Scholar
  21. 21.
    Dawood S, Sen TK (2012) Water Res 46:4316CrossRefGoogle Scholar
  22. 22.
    Ataei S, Yahya R, Gan SN (2011) J Polym Environ 19:540–545CrossRefGoogle Scholar
  23. 23.
    Liu YZ, Wang SP, Yuan K, Tang H (2014) Adv Mater Res 881–883 297–301Google Scholar
  24. 24.
    Wei Z (2009) Doctoral dissertation, HeBei University of Science & TechnologyGoogle Scholar
  25. 25.
    Wang RG, Zhou XX, Lei WW (2012) Rare Met Lett 31:48–52CrossRefGoogle Scholar
  26. 26.
    Mitran G, Yuzhakova T, Popescu I, Marcu IC (2015) J Mol Catal A 396:275–281CrossRefGoogle Scholar
  27. 27.
    Mei JQ (2015) Food Chemistry 187:378–384CrossRefGoogle Scholar
  28. 28.
    Gawish SM, El-Ola SMA, Ramadan AM, El-Kheir AAA (2012) J Appl Poly Sci 123:3345–3353CrossRefGoogle Scholar
  29. 29.
    Chen Y, Ye Y, Li R, Guo Y, Tan H (2013) Fibers Polym 14:1058–1065CrossRefGoogle Scholar
  30. 30.
    Demiate IM, Dupuy N, Huvenne JP, Cereda MP, Wosiacki G (2000) Carbohydr Polym 42:149–158CrossRefGoogle Scholar
  31. 31.
    Yang CQ, Wang X, Kang IS (1997) Text Res J 67.5:334–342CrossRefGoogle Scholar
  32. 32.
    Abdulsamad A (2015) Br J Pharm Res 6(3):155–165CrossRefGoogle Scholar
  33. 33.
    Delval F, Crini G, Bertini S, Filiatre C, Torri G (2005) Carbohydr Polym 60:67–75CrossRefGoogle Scholar
  34. 34.
    Srinivasan K, Stalin T (2014) Spectrochim Acta Part A 130:105CrossRefGoogle Scholar
  35. 35.
    Hasegawa Y, Inoue Y, Deguchi K, Ohki S, Tansho M, Shimizu T (2012) J Phys Chem B 116:1758–1764CrossRefGoogle Scholar
  36. 36.
    Lian X, Wang C, Zhang K, Li L (2014) Int J Biol Macromol 64:288–293CrossRefGoogle Scholar
  37. 37.
    Zhang H, Liu B, Qiu Y, Fan JF, Yu SJ (2013) Starch/Starke 66:515–523CrossRefGoogle Scholar
  38. 38.
    Mandal B, Ray SK (2015) Int J Biol Macromol 81:847CrossRefGoogle Scholar
  39. 39.
    Qiaoyu L, Diao S, Xiong S, Shenghua Z.; Qiaoyu L, Siming Z, Shanbai X (2003) Food Sci (in Chinese) 24:105–108Google Scholar
  40. 40.
    Mangolim CS, Moriwaki C, Nogueira AC, Sato F, Baesso ML, Neto AM (2015) Food Chem (in Chinese) 153:361–370Google Scholar
  41. 41.
    Xu S, Wang J, Wu R, Wang J, Li H (2006) Chem Eng J 117:161–167CrossRefGoogle Scholar
  42. 42.
    Erdem E, Çölgeçen G, Donat R (2005) J Colloid Interface Sci 282:314–319CrossRefGoogle Scholar
  43. 43.
    Alpat SK, Ozbayrak O, Alpat S, Akçay H (2008) J Hazard Mater 151:213–220CrossRefGoogle Scholar
  44. 44.
    Shen HM, Zhu GY, Yu WB, Wu HK, Ji H, Shi HX (2015) RSC Adv 5:84410–84422CrossRefGoogle Scholar
  45. 45.
    Kyzas GZ, Lazaridis NK, Bikiaris DN (2013) Carbohydr Polym 91:198–208CrossRefGoogle Scholar
  46. 46.
    Haerifar M, S. Azizian (2013) Chem Eng J 215:65–71CrossRefGoogle Scholar
  47. 47.
    Bai W, Fan L, Zhou Y, Zhang Y, Shi J, Lv G (2017) J Appl Polym Sci 134(17)Google Scholar
  48. 48.
    Wang T, Zhang W, Lu X (2016) Pol J Environ Stud 25(2):733–740CrossRefGoogle Scholar
  49. 49.
    Zhu L, Wang Y, He T, You L, Shen X (2016) J Polym Environ 24:148–158CrossRefGoogle Scholar
  50. 50.
    Crini G (2008) Dyes Pigment 77:415–426CrossRefGoogle Scholar
  51. 51.
    Takeuchi T, Miwa T (1994) Chromatographia 38:453–455CrossRefGoogle Scholar
  52. 52.
    Zhang Y, Yang ZM, Zhu HY (2007) J. Phys. Chem. 23:394–398Google Scholar
  53. 53.
    Liu DK, Dong ZL (2004) Dyestuffsand Coloration 41:155–157Google Scholar
  54. 54.
    Kim M, Lee SJ (2002) Carbohydr Polym 50:331–337CrossRefGoogle Scholar
  55. 55.
    Chen J, Ziv M (2001) Plant Cell Rep 20:22–27CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of TextilesTianjin Polytechnic UniversityTianjinChina
  2. 2.State Key Laboratory of Separation Membranes and Membrane ProcessesTianjin Polytechnic UniversityTianjinChina

Personalised recommendations