The Influence of Cooper and Chromium Ions on the Production of Exopolysaccharide and Polyhydroxybutyrate by Rhizobium tropici LBMP-C01

  • Tatiane Fernanda Leonel
  • Cristiane Moretto
  • Tereza Cristina Luque Castellane
  • Paulo Inácio da Costa
  • Eliana Gertrudes de Macedo LemosEmail author
Original Paper


The influence of bivalent copper (Cu2+) and hexavalent chromium (Cr6+) ions on exopolysaccharide (EPS) and polyhydroxybutyrate (PHB) production by the bacterium Rhizobium tropici LBMP-C01 was investigated. The partial structure of both biopolymers produced by rhizobia were characterized, and the quantification of exoR and exoZ gene expression by real-time polymerase chain reaction (Real-Time PCR) was also investigated. Results showed that the supplementation with Cu2+ for 144 h induced an increase in the production of EPS by 48% and PHB by 46.66% compared to the control. Expression studies revealed that the expressed exoR and exoZ genes were affected by metal ion treatment. It can be stated that this particular rhizobial strain is a future potential candidates to produce super adsorbent quite useful for soil bioremediation.


Exopolysaccharide Polyhydroxybutyrate Heavy metals Rhizobia 



We thank the financial support of CAPES (Coordination of Improvement of Higher Level Personnel), the graduate program in Agricultural Microbiology (Universidade Estadual Paulista, UNESP-FCAV) and the Electronic Microscopy Laboratory (University of São Paulo, USP–Ribeirão Black-SP). The preparation of primer pairs for evaluation of gene expression was performed by Dr. Silvana Pompea of Val de Moraes. In the analyzes of FTIR we counted with the help of Dr Luis Alberto Conalgo, of Embrapa Instrumentação Agropecuária, Brazilian Company of Agricultural Research, São Carlos, Brazil. Also we thank for text review by Dr Manoel Victor Franco Lemos, UNESP Campus Jaboticabal, Brazil.

Compliance with Ethical Standards

Conflict of interest

The author(s) declare that they have no competing interests.


  1. 1.
    Mishra J, Singh R, Arora NK (2017) Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front Microbiol 8:1706. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Castellane et al (2018) Exploring and utilization of some bacterial exopolysaccharide. Biopolym Res 2(1):1000106Google Scholar
  3. 3.
    Whitfield C (1988) Bacterial extracellular polysaccharides. Can J Microbiol 34:415–420CrossRefGoogle Scholar
  4. 4.
    Sutherland IW (2000) The biofilm matrix-an immobilized but dynamic microbial environment. Trends Microbiol 9:222–227CrossRefGoogle Scholar
  5. 5.
    Gupta P, Diwan B (2017) Bacterial exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep 13:58–71. CrossRefGoogle Scholar
  6. 6.
    Okaiyeto K, Nwodo UU, Mabinya LV, Okoli AS, Okoh AI (2015) Characterization of a Bioflocculant (MBF-UFH) produced by Bacillus sp. AEMREG7. Int J Mol Sci 16:12986–13003CrossRefGoogle Scholar
  7. 7.
    Medhi K, Thakur IS (2018) Bioremoval of nutrients from wastewater by a denitrifier Paracoccus denitrificans ISTOD1. Bioresour Technol Rep 1:56–60CrossRefGoogle Scholar
  8. 8.
    Wan Z, Brown PJB, Elliott EN, Brun YV (2013) The adhesive and cohesive properties of a bacterial polysaccharide adhesin are modulated by a deacetylase. Mol Microbiol 88:486–500. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zhang DY, Wan Y, Xu JY, Wu GH, Li L, Yao XH (2016) Ultrasound extraction of polysaccharides from mulberry leaves and their effect on enhancing antioxidant activity. Carbohydr Polym 137:473–479. CrossRefPubMedGoogle Scholar
  10. 10.
    Moscovici M (2015) Present and future medical applications of microbial exopolysaccharides. Front Microbiol 6:1012CrossRefGoogle Scholar
  11. 11.
    Raveendran S, Poulose AC, Yoshida Y, Maekawa T, Kumar DS (2013) Bacterial exopolysaccharide based nanoparticles for sustained drug delivery, cancer chemotherapy and bioimaging. Carbohydr Polym 91:22–32CrossRefGoogle Scholar
  12. 12.
    Abinaya M, Vaseeharan B, Divya M, Sharmili A, Govindarajan M, Alharbi NS,et al (2018) Bacterial exopolysaccharide (EPS)-coated ZnO nanoparticles showed high antibiofilm activity and larvicidal toxicity against malaria and Zika virus vectors. J Trace Elem Med Biol 45:93–103. CrossRefPubMedGoogle Scholar
  13. 13.
    Ayeldeen M, Negm A, El-Sawwaf M, Kitazume M (2017) Enhancing mechanical behaviors of collapsible soil using two biopolymers. J Rock Mech Geotech Eng 9:329–339. CrossRefGoogle Scholar
  14. 14.
    Janczarek M (2011) Review: environmental signals and regulatory pathways that influence exopolysaccharide production in rhizobia. Int J Mol Sci 12:7898–7933. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Poole P, Ramachandran V, Terpolilli J (2018) Rhizobia: from saprophytes to endosymbionts. Nat Rev Microbiol 16:291CrossRefGoogle Scholar
  16. 16.
    Fernandes Junior PI et al (2009) Polymers as carriers for rhizobial inoculant formulations. Pesq Agropec Bras. CrossRefGoogle Scholar
  17. 17.
    Shamseldin A, Abdelkhalek A, Sadowsky MJ (2017) Symbiosis 71:91. CrossRefGoogle Scholar
  18. 18.
    Checcucci A et al (2017) Trade, diplomacy, and warfare: the quest for elite rhizobia inoculant strains. Front Microbiol 8:2207CrossRefGoogle Scholar
  19. 19.
    Ormeño-Orrillo E, Menna P, Almeida LGP, Ollero FJ, Nicolás MF, Rodrigues EP, Nakatani AS, Batista JSS, Chueire LMO, Souza RC, Vasconcelos ATR, Megías M, Hungria M, Martínez-Romero E (2012) Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.). BMC Genom 13:735CrossRefGoogle Scholar
  20. 20.
    Gundi JS, Santos MS, Oliveira ALM, Nogueira MA, Hungria M (2018) Development of liquid inoculants for strains of Rhizobium tropici group using response surface methodology. Afr J Biotechnol 17(13):411–421CrossRefGoogle Scholar
  21. 21.
    Rehm BHA (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8:578–592CrossRefGoogle Scholar
  22. 22.
    Schue M, Fekete A, Ortet P, Brutesco C, Heulin T, Schmitt-Kopplin P et al. (2011) Modulation of metabolism and switching to biofilm prevail over exopolysaccharide production in the response of Rhizobium alamii to cadmium. PLoS ONE 6:e26771. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Czajka DR, Leão LW, Shuler ML, Ghiorse WC (1997) Avaliação da utilidade de polímeros extracelulares bacterianos para o tratamento de solos contaminados com metais: persistência do polímero, mobilidade e a influência do chumbo. Water Res 31:2827–2839CrossRefGoogle Scholar
  24. 24.
    Loaëc M, Olier R, Guezennec J (1997) Uptake of lead, cadmium and zinc by novel bacterial exopolysaccharide. Water Res 31:1171–1179CrossRefGoogle Scholar
  25. 25.
    Sathiyanarayanan G, Bhatia SK, Song HS, Jeon JM, Kim J, Lee YK, Yang YH (2017) Production and characterization of medium-chain-length polyhydroxyalkanoate copolymer from Arctic psychrotrophic bacterium Pseudomonas sp. PAMC 28620. Int J Biol Macromol 97:710–720CrossRefGoogle Scholar
  26. 26.
    Staudt AK, Wolfe LG, Shrout JD (2012) Variations in exopolysaccharide production by Rhizobium tropici. Arch Microbiol 194:197–206CrossRefGoogle Scholar
  27. 27.
    Castellane TCL, Lemos MVF, Lemos EGM (2014) Evaluation of the biotechnological potential of Rhizobium tropici strains for exopolysaccharide production. Carbohydr Polym 111:191–197CrossRefGoogle Scholar
  28. 28.
    Castellane TCL, Campanharo JC, Colnago LA, Coutinho ID, Lopes EM, Lemos MVF, Lemos EGM (2017) Characterization of new exopolysaccharide production by Rhizobium tropici during growth on hydrocarbon substrate. Int J Biol Macromol 96:361–369CrossRefGoogle Scholar
  29. 29.
    Lugg H, Sammons RL, Marquis PM, Hewitt CJ, Yong P, Paterson-Beedle M, Macaskie LE (2008) Polyhydroxybutyrate accumulation by a Serratia sp. Biotechnol Lett 30(3):481–491CrossRefGoogle Scholar
  30. 30.
    Peters PJ, Hunziker W (2001) Subcellular localization of Rab17 by cryo-immunogold electron microscopy in epithelial cells grown on polycarbonate filters. Methods Enzymol 329:210–225CrossRefGoogle Scholar
  31. 31.
    Castellane TCL, Persona MR, Campanharo JC, Lemos EGM (2015) Production of exopolysaccharide from rhizobia with potential biotechnological and bioremediation applications. Int J Biol Macromol 74:515–522CrossRefGoogle Scholar
  32. 32.
    Penloglou G, Chatzidoukas C, Kiparissides C (2012) Microbial production of polyhydroxybutyrate with tailor-made properties: an integrated modelling approach and experimental validation. Biotechnol Adv 30(1), 329–337CrossRefGoogle Scholar
  33. 33.
    Osiro D, Franco RWA, Colnago LA (2011) Spectroscopic characterization of the exopolysaccharide of Xanthomonas axonopodis pv. citri in Cu2+ resistance mechanism. J Braz Chem Soc 22:1339–1347CrossRefGoogle Scholar
  34. 34.
    Fu D, O’Neill RA (1995) Monossaccharide composition analysis of oligosaccharides and glycoproteins by high-performance liquid chromatography. Anal Biochem 227:377–384CrossRefGoogle Scholar
  35. 35.
    Thompson JD, Higgins DG, Gibson TJ (1994) Clustal-W-improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98.Google Scholar
  37. 37.
    Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative Ct method. Nat Protoc 3(6):1101–1104CrossRefGoogle Scholar
  38. 38.
    Kopycinska M, Lipa P, Ciesla J, Koziel M, Janczarek M (2018) Extracellular polysaccharide protects Rhizobium leguminosarum cells against zinc stress in vitro and during symbiosis with clover. Environ Microbiol Rep. CrossRefPubMedGoogle Scholar
  39. 39.
    Ogawa T, Usui M, Yatome C et al (1989) Influence of chromium compounds on microbial growth and nucleic acid synthesis. Bull Environ Contam Toxicol 43:254–260CrossRefGoogle Scholar
  40. 40.
    Mohamad OA, Hao X, Xie P, Hatab S, Lin Y, Wei G (2012) Biosorption of Copper(II) from aqueous solution using non-living Mesorhizobium amorphae strain CCNWGS0123. Microbes Environ 27:234–241CrossRefGoogle Scholar
  41. 41.
    Pimentel BE, Moreno-Sánchez R, Cervantes C (2002) Efflux of chromate by cells of Pseudomonas aeruginosa expressing the ChrA protein. FEMS Microbiol Lett 212:249–254CrossRefGoogle Scholar
  42. 42.
    Aguilar-Barajas E, Jerónimo-Rodríguez P, Ramírez-Díaz MI, Rensing C, Cervantes C (2012) The ChrA homologue from a sulfur-regulated gene cluster in cyanobacterial plasmid pANL confers chromate resistance. World J Microbiol Biotechnol 28:865–869CrossRefGoogle Scholar
  43. 43.
    Harish R, Samuel J, Mishra R, Chandrasekaran N, Mukherjee A (2012) Bio-reduction of Cr(VI) by exopolysaccharides (EPS) from indigenous bacterial species of Sukinda chromitemine, India. Biodegradation 23:487–496CrossRefGoogle Scholar
  44. 44.
    Laus MC, Van Brussel AA, Kijne JW (2005) Role of cellulose fibrils and exopolysaccharides of Rhizobium leguminosarum in attachment to and infection of Vicia 198 Karsativa root hairs. Mol Plant Microbe Interact 18:533–538CrossRefGoogle Scholar
  45. 45.
    Glenn SA, Gurich N, Feeney MA, González JE (2007) The ExpR/Sin quorum-sensing system controls succinoglycan production in Sinorhizobium meliloti. J Bacteriol 189:7077–7088CrossRefGoogle Scholar
  46. 46.
    Wang J, Yu H-Q (2007) Biosynthesis of polyhydroxybutyrate (PHB) and extracellular polymeric substances (EPS) by Ralstonia eutropha ATCC 17699 in batch cultures. Appl Microbiol Biotechnol 75:871–887CrossRefGoogle Scholar
  47. 47.
    Getachew A, Woldesenbet F (2016) Production of biodegradable plastic by polyhydroxybutyrate (PHB) accumulating bacteria using low cost agricultural waste material. BMC Res 9:509. CrossRefGoogle Scholar
  48. 48.
    Tavernier P, Portais J, Nava S, Courtois J, Courtois B, Barbotin J (1997) Exopolysaccharide and poly-(beta)-hydroxybutyrate coproduction in two Rhizobium meliloti strains. Appl Environ Microbiol 63:21–26PubMedPubMedCentralGoogle Scholar
  49. 49.
    Aguilera M, Quesada MT, Del Aguila VG, Morillo JA, Rivadeneyra MA, Ramos-Cormenzana A, Monteoliva-Sánchez M (2008) Characterisation of Paenibacillus jamilae strains that produce exopolysaccharide during growth on and detoxification of olive mill wastewaters. Biores Technol 99:5640–5644CrossRefGoogle Scholar
  50. 50.
    Sheng GP, Yu HQ, Li XY (2010) Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Adv 28:882CrossRefGoogle Scholar
  51. 51.
    Karbowiak M, Urbanowicz A, Reid MF (2007) 4 f 6→ 4 f 5 5 d 1 absorption spectrum analysis of Sm 2+: SrCl 2. Phys Rev B 76(11):115125CrossRefGoogle Scholar
  52. 52.
    Deschatre M, Ghillebaert F, Guezennec J, Colin CS (2013) Sorption of copper(II) and silver(I) by four bacterial exopolysaccharides. Appl Biochem Biotechnol 171:1313–1327CrossRefGoogle Scholar
  53. 53.
    Moretto C, Castellane TCL, Lopes EM, Omori WP, Sacco LP, Lemos EG de (2015) Chemical and rheological properties of exopolysaccharides produced by four isolates of rhizobia. Int J Biol Macromolecules 81:291–298. CrossRefGoogle Scholar
  54. 54.
    Gil-Serrano A, Sanchez Del Junco, A, Tejero-Mateo P (1990) Structure of the extracellular polysaccharide secreted by Rhizobium leguminosarum var. phaseoli CIAT 899. Carbohydr Res 204:103–107CrossRefGoogle Scholar
  55. 55.
    Randriamahefa S, Renard E, Guérin P, Langlois V (2003) Fourier transform infrared spectroscopy for screening and quantifying production of PHAs by Pseudomonas grown on sodium octanoate. Biomacromolecules 4:1092–1097CrossRefGoogle Scholar
  56. 56.
    Li Z, Lu M, Wei G (2013) An omp gene enhances cell tolerance of Cu(II) in Sinorhizobium meliloti CCNWSX0020. World J Microbiol Biotechnol 29:1655–1660CrossRefGoogle Scholar
  57. 57.
    Robinson NJ, Winger DR (2010) Review: copper metallochaperones. Annu Rev Biochem 79:537–562. CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Delmar JA, Su C-C, Yu EW (2013) Structural mechanisms of heavy-metal extrusion by the Cus efflux system. Biometals 26:593–607CrossRefGoogle Scholar
  59. 59.
    Su C-C, Long F, Yu EW (2011) Review: the Cus efflux system removes toxic ions via a methionine shuttle. Protein Sci 20:6–18CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Tatiane Fernanda Leonel
    • 1
    • 4
  • Cristiane Moretto
    • 1
  • Tereza Cristina Luque Castellane
    • 1
    • 2
  • Paulo Inácio da Costa
    • 3
  • Eliana Gertrudes de Macedo Lemos
    • 1
    Email author
  1. 1.Faculty of Agrarian and Veterinary Sciences, Department of Technology, Laboratory of Biochemistry and Plant MicroorganismsUNESP - Univ Estadual PaulistaJaboticabalBrazil
  2. 2.Faculty of Agrarian and Veterinary Sciences, Department of Biology Applied to Agriculture, Laboratory of Genetics of Bacteria and Applied BiotechnologyUNESP - Univ Estadual PaulistaJaboticabalBrazil
  3. 3.Faculty of Pharmaceutical Sciences, Laboratory of Clinical Immunology and Molecular BiologyUNESP - Univ Estadual PaulistaAraraquaraBrazil
  4. 4.Graduate Program on Agricultural MicrobiologyFaculty of Agrarian and Veterinary Sciences, UNESP - Univ Estadual PaulistaJaboticabalBrazil

Personalised recommendations