Advertisement

Journal of Polymers and the Environment

, Volume 27, Issue 2, pp 434–443 | Cite as

Properties of Agricultural Films Prepared from Biodegradable Poly(Butylene Succinate) Adding Natural Sorbent and Fertilizer

  • Nattakarn HongsriphanEmail author
  • Arak Pinpueng
Original Paper
  • 28 Downloads

Abstract

Lemon basil (LB) seeds are natural sorbent that would be a good candidate to apply for agricultural application. This study developed a new composite material by compounding biodegradable poly(butylene succinate) (PBS) with grinded LB particles (5, 10, 15 and 20 wt%) and hot pressing into composite films. Ammonium sulfate of 10 phr was loaded as fertilizer. Mechanical and thermal properties as well as moisture sorption and ammonium ion release in water of the composite films were investigated. Composites were characterized by FTIR and SEM. It was found that moisture sorption was enhanced dramatically with respect to LB content. The improved sorption allowed ammonium sulfate to be released faster but reached equilibrium at lower concentration, which the sorption kinetics was fit well following the Pseudo-second order model. Biodegradation of composite films was found to improve in the soil burial test. Nevertheless, adding these fillers caused composite films to be more brittle.

Keywords

Agricultural film Poly(butylene succinate) Natural sorbent Moisture sorption Fertilizer 

Notes

Acknowledgements

The authors would like to thank The Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Thailand for research funding and student scholarship. Also, the Department of Materials Science and Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University was appreciated for instrument support throughout the research.

Supplementary material

10924_2018_1358_MOESM1_ESM.docx (830 kb)
Supplementary material 1 (DOCX 829 KB)

References

  1. 1.
    Ouya D (2013) Biodegradable seedling bags could grow stronger trees, but can they replace polythene? Agroforestry World. http://blog.worldagroforestry.org/index.php/2013/08/20/biodegradable-seedling-bags-could-grow-stronger-trees-but-can-they-replace-polythene/. Cited 2018 April 17
  2. 2.
    Muriuki JK, Kuria AW, Muthuri CW, Mukuralinda A, Simons AJ, Jamnadass RH (2014) Small-scale For 13:127–142CrossRefGoogle Scholar
  3. 3.
    Finkenstadt VL, Tisserat B (2010) Ind Crops Prod 31:316–320CrossRefGoogle Scholar
  4. 4.
    Ma Z, Ma Y, Qin L, Liu J, Su H (2016) Int Biodeterior Biodegrad 111:54–61CrossRefGoogle Scholar
  5. 5.
    Touchaleaume F, Martin-Closas L, Angellier-Coussy H, Chevillard A, Cesar G, Gontard N, Gastaldi E (2016) Chemosphere 144:433–439CrossRefGoogle Scholar
  6. 6.
    Briassoulis D, Giannoulis A (2018) Polym Test 67:99–109CrossRefGoogle Scholar
  7. 7.
    Briassoulis D (2004) J Polym Environ 12:65–81CrossRefGoogle Scholar
  8. 8.
    Pan W, Bai Z, Su T, Wang Z (2018) Int J Biol Macromol 111:1040–1046CrossRefGoogle Scholar
  9. 9.
    Sriakkarakul M, Hongsriphan N (2012), Moisture absorption and fertilizer release of poly(butylene succinate) blended with fertilizer loaded superabsorbent polymer for using in agriculture application. In: The 10th Eco-Energy and Materials Science and Engineering Symposium, Ubon RachathaniGoogle Scholar
  10. 10.
    Yang J, Gao J, Wang X, Mei S, Zhao R, Hao C, Wu Y, Zhai X, Liu Y (2017) J Nanoparticle Res 19:350–363CrossRefGoogle Scholar
  11. 11.
    Varga F, Carović-Stanko K, Ristić M, Grdiša M, Liber Z, Šatovi Z (2017) Ind Crops Prod 109:611–618CrossRefGoogle Scholar
  12. 12.
    Raina P, Agarwal DM,CCV,A, Wagh N, Kaul-Ghanekara R (2016) J Herb Med 6:28–36CrossRefGoogle Scholar
  13. 13.
    Arranz E, Jaime L, LópezdelasHazas MC, Reglero G, Santoyo S (2015) Ind Crops Prod 67:121–129CrossRefGoogle Scholar
  14. 14.
    Shamsnejati S, Chaibakhsh N, Pendashteh AR, Hayeripour S (2015) Ind Crops Prod 69:40–47CrossRefGoogle Scholar
  15. 15.
    Khazaei N, Esmaiili M, Djomeh ZE, Ghasemlou M, Jouki M (2014) Carbohydr Polym 102:199–206CrossRefGoogle Scholar
  16. 16.
    Lee JM, Ishak ZAM, Taib RM, Law TT, Thirmizir MZA (2013) J Polym Environ 21:293–302CrossRefGoogle Scholar
  17. 17.
    Siracusa V, Lotti N, Munari A, Rosa M (2015) Polym Degrad Stab 119:35–45CrossRefGoogle Scholar
  18. 18.
    Boer GJ, Sokolik IN, Martin ST (2007) JQSRT 108:17–38CrossRefGoogle Scholar
  19. 19.
    Gahruie HH, Ziaee E, Eskandari MH, Hosseini SMH (2017) Carbohydr Polym 166:93–103CrossRefGoogle Scholar
  20. 20.
    Kwon H-J, Sunthornvarabhas J, Park J-W, Lee J-H, Kima H-J, Piyachomkwa K, Sriroth K, Choe D (2014) Composite B 56:232–237CrossRefGoogle Scholar
  21. 21.
    Bosq N, Aht-Ong D (2018) JTAC 132:233–249Google Scholar
  22. 22.
    Hongsriphan N, Burirat T, Niratsungnern P, Trongteng S (2013) JMMM 23:41–47Google Scholar
  23. 23.
    Liminana P, Garcia-Sanoguera D, Quiles-Carrillo L, Balart R, Montanes N (2018) Composite B 144:153–162CrossRefGoogle Scholar
  24. 24.
    Liang R, Yuan H, Xi G, Zhou Q (2009) Carbohydr Polym 77:181–187CrossRefGoogle Scholar
  25. 25.
    Hoa Y-S, Ofomaja AE (2006) J Hazard Mater 129:137–142CrossRefGoogle Scholar
  26. 26.
    Okewale AO, Babayemi KA, Olalekan AP (2013) IJASET 3:35–42Google Scholar
  27. 27.
    Huang Z, Qian L, Yin Q, Yu N, Liu T, Tian D (2018) Polym Test 66:319–326CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering, Faculty of Engineering and Industrial TechnologySilpakorn UniversityNakhon PathomThailand

Personalised recommendations