Journal of Polymers and the Environment

, Volume 27, Issue 2, pp 386–394 | Cite as

Thermal and Mechanical Properties of Blends Containing PP and Recycled XLPE Cable Waste

  • Karin LindqvistEmail author
  • Mattias Andersson
  • Annika Boss
  • Henrik Oxfall
Original Paper


Recycled XLPE from cable manufacturing waste and end-of-life cables were mixed with virgin polypropylene (PP) in order to evaluate the potential to be used in new injection molded products. The influence of metal contaminations on the mechanical and thermal properties and how the blends could be stabilized in order to be recycled and give reliable properties over time were studied. The results show that blends of 25–50% XLPE in PP give good mechanical properties with retained or improved impact strength independent of the source of XLPE. Ageing at 105 °C for 6 months showed a more severe material degradation and loss of mechanical properties for blends that contained XLPE with end-of-life cable. Addition of metal deactivator proved to retain the mechanical properties for more than 8 months of ageing at 105 °C. Simulated recycling of 50% XLPE in PP stabilized with a metal deactivator, showed that mechanical properties were preserved.


Recycling XLPE Ageing Stabilization 



The authors wish to thank Professor Thomas Hjertberg at Borealis for fruitful discussions. The authors gratefully acknowledge the financial support from the Swedish Innovation Agency VINNOVA.


  1. 1.
    Bevis M, Irving N, Allan P (1983) Conserv Recycl 6:3–10CrossRefGoogle Scholar
  2. 2.
    Hagström B, Hampton RN, Helmesjo B, Hjertberg T (2006)) IEEE Electr Insul Mag 22:21–30CrossRefGoogle Scholar
  3. 3.
    Christéen J (2007) Swedish cable waste for recovery in China or Sweden, Master thesis report, LIU-IEI-TEK-A–07/00097—SE, LinköpingGoogle Scholar
  4. 4.
    Boss A, Boström JO, Nilsson PH, Farkas A, Eriksson A, Rasmussen E, Svenningsson E, Dalesjö M, Johansson A (2011) In: Proceeding of 8th international conference on insulated power cables, Versailles, France, June 19–23, B.2.6Google Scholar
  5. 5.
    Zackrisson M, Jönsson C, Olsson E (2014) Adv Chem Eng Sci 4:221–232CrossRefGoogle Scholar
  6. 6.
    Baek BK, Shin JW, Jung JY, Hong SM, Nam GJ, Han H, Koo CM (2015) J Appl Polym Sci 132:1–7CrossRefGoogle Scholar
  7. 7.
    Tokuda S, Horikawa S, Negishi K, Uesugi K, Hirukawa H (2003) Furukawa Rev 23:88–93Google Scholar
  8. 8.
    Navratil J, Manas M, Mizera A, Bednarik M, Stanek M, Danek M (2015) Radiat Phys Chem 106:68–72CrossRefGoogle Scholar
  9. 9.
    Qudaih R, Janajreh I, Vukusic SE (2011) Advances in sustainable manufacturing. In: Proceedings of the 8th global conference on sustainable manufacturing, Abu Dhabi City, Abu Dhabi, Nov 22–24, 2010, Seliger G (ed) Springer Nature, 231–237Google Scholar
  10. 10.
    Schwarzenbach K (2009). In: Zweifel H, Maier RD, Schiller M (eds) Plastics additives handbook, chap 1, 6th edn. Hanser Publishers, Munich, pp 3–9Google Scholar
  11. 11.
    Gugumus F (2009) In: Zweifel H, Maier RD, Schiller M (eds) Plastics additives handbook, chap. 2, 6th edn. Hanser Publishers, Munich, pp 139–152Google Scholar
  12. 12.
    Day M, Cooney JD, MacKinnon M (1995) Polym Degrad Stab 48:341–349CrossRefGoogle Scholar
  13. 13.
    Pauquet JR, Todesco RV, Drake WO (1993) In: Proceeding of the 42nd international wire and cable symposium, Nov 15–18. St Louis, USA, IWCS, 1993, 1–9Google Scholar
  14. 14.
    Celina M, Gillen KT, Assink RA (2005) Polym Degrad Stab 90:395–404CrossRefGoogle Scholar
  15. 15.
    Celina M, George GA (1995) Polym Degrad Stab 48:297–312CrossRefGoogle Scholar
  16. 16.
    Jansson A, Möller K, Gevert T (2003) Polym Degrad Stab 82:37–46CrossRefGoogle Scholar
  17. 17.
    Hocquet S, Dosiére M, Tanzawa Y, Koch MHJ (2002) Macromolecules 35:5025–5033CrossRefGoogle Scholar
  18. 18.
    Fatou JG, Mandelkern L (1965) J Phys Chem 69:417–428CrossRefGoogle Scholar
  19. 19.
    Osawa Z (1988) Polym Degrad Stab 20:203–236CrossRefGoogle Scholar
  20. 20.
    Gorghiu LM, Jipa S, Zaharescu T, Setnescu R, Mihalcea I (2004) Polym Degrad Stab 84:7–11CrossRefGoogle Scholar
  21. 21.
    Fitaroni LB, de Lima JA, Cruz SA, Waldman WR (2016) Polym Test 53:165–173CrossRefGoogle Scholar
  22. 22.
    Hendrickson L, Connole KB (1995) Polym Eng Sci 35:211–217CrossRefGoogle Scholar
  23. 23.
    Grabmayer K, Wallner GM, Beißmann S, Braun U, Steffen R, Nitsche D, Röder B, Buchberger W, Lang RW (2014) Polym Degrad Stab 109:40–49CrossRefGoogle Scholar
  24. 24.
    Schwarzenbach K (2009) Zweifel H, Maier RD, Schiller M (eds) Plastics additives handbook, chap 1, 6th edn. Hanser Publishers, Munich, pp 61–62Google Scholar
  25. 25.
    Sirisinha K, Chuaythong P (2014) J Mater Sci 49:5182–5189CrossRefGoogle Scholar
  26. 26.
    Dixon RR (1980) IEEE Trans Electr Insul 15.4:331–334CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Swerea IVF ABMölndalSweden

Personalised recommendations