Advances in Studies Using Vegetable Wastes to Obtain Pectic Substances: A Review

  • Flávia Roberta Buss Marenda
  • Fernanda Mattioda
  • Ivo Mottin Demiate
  • Alicia de Francisco
  • Carmen Lúcia de Oliveira Petkowicz
  • Maria Helene Giovanetti Canteri
  • Renata Dias de Mello Castanho AmboniEmail author
Original Paper


Vegetable waste represents a serious environmental problem for industries; however, it is also a valuable source of pectic substances. This paper aims to highlight the advances that have been made through studies regarding pectic substances from vegetable wastes, as well as providing an overview of the chemical structure of pectin, extraction and characterisation techniques, and potential applications for pectin in relation to the areas of food and health. Pectin is mainly composed of galacturonic acid and it is one of the most complex polysaccharides in nature. A wide range of vegetable wastes contain a high pectin yield that can be industrially utilised. However, factors such as the type of raw material, the maturation stage of that raw material, and the extraction techniques that are used, affect the structural and functional properties of the pectin, as well as influencing its potential application. This study outlines the different environmentally-friendly techniques that are used to extract pectin, such as microwave, ultrasound, enzymatic and other methods, highlighting their advantages and disadvantages compared with the conventional extraction method. Some techniques are advantageous for industrial use; however, it is necessary to optimise the extraction conditions and to make a financial investment in order to obtain a high yield of pectin in a short amount of time. Characteristics such as galacturonic acid content, the degree of methyl esterification, the degree of acetylation, molar mass and the chemical structure are essential parameters required to define possible applications of pectic substances. In vitro and in vivo studies regarding the properties of pectic substances have shown that these substances can be beneficial to health, with antimicrobial, antitumoral, anti-inflammatory and analgesic effects. Nevertheless, further studies are required to examine the mechanisms of action for these effects to be applied in humans. Consequently, greater understanding about the chemical structure of pectin and its extraction techniques are crucial for the development of new foods and drug formulations.


Vegetable waste Pectic substances Chemical structure Extraction techniques Pectin application 



This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001. Renata D.M.C. Amboni is a recipient of a researcher fellowship (PQ2) from CNPq. We would like to pay a posthumous homage to Professor Gilvan Wosiacki, who devoted his life to studying and motivating his students, apple processing being his main field of study. To this great researcher on pectin, the authors thank for his contributions in this work.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Gharib-Bibalan S (2018) Food Eng Rev 10:95–111CrossRefGoogle Scholar
  2. 2.
    Gerschenson LN (2017) Food Hydrocoll 68:23–30CrossRefGoogle Scholar
  3. 3.
    Petkowicz CLO, Vriesmann LC, Williams PA (2017) Food Hydrocoll 65:57–67CrossRefGoogle Scholar
  4. 4.
    Voragen AGJ, Coenen GJ, Verhoef RP, Schols HA (2009) Struct Chem 20:263–275CrossRefGoogle Scholar
  5. 5.
    Majdoub H, Roudesli S, Deratani A (2001) Polym Int 50:552–560CrossRefGoogle Scholar
  6. 6.
    May CD (1990) Carbohydr Polym 12:79–99CrossRefGoogle Scholar
  7. 7.
    Noreen A, Nazli Z, Akram J, Rasul I, Mansha A (2017) Int J Biol Macromol 101:254–272PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Sila DN, Van Buggenhout S, Duvetter T, Van Loey A, Hendrickx M (2009) Compr Rev Food Sci Food Saf 8:105–117CrossRefGoogle Scholar
  9. 9.
    Adetunji LR, Adekunle A, Orsat V, Raghavan V (2017) Food Hydrocoll 62:239–250CrossRefGoogle Scholar
  10. 10.
    Perussello CA, Zhang Z, Marzocchella A, Tiwari BK (2017) Compr Rev Food Sci Food Saf 16:776–796CrossRefGoogle Scholar
  11. 11.
    Muzzarelli RAA, Boudrant J, Meyer D, Manno N, Demarchis M, Paoletti MG (2012) Carbohydr Polym 87:995–1012CrossRefGoogle Scholar
  12. 12.
    Lv C, Wang Y, Wang L, Li D, Adhikari B (2013) Carbohydr Polym 95:233–240PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Fertonani HCR, Scabio A, Carneiro EBB, Canteri-Schemim MHG, Nogueira A, Wosiacki G (2009) Braz Arch Biol Technol 52:177–185. CrossRefGoogle Scholar
  14. 14.
    Kanmani P, Dhivya E, Aravind J, Kumaresan K (2014) IJEE 5:303–312. CrossRefGoogle Scholar
  15. 15.
    Sagar NA, Pareek S, Sharma S, Yahia EM, Lobo MG (2018) Compr Rev Food Sci Food Saf 17:512–531CrossRefGoogle Scholar
  16. 16.
    Muñoz-Labrador A, Moreno R, Villamiel M, Montilla A (2018) J Sci Food Agric CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Banerjee J, Singh R, Vijayaraghavan R, Macfarlane D, Patti AF, Arora A (2017) Food Chem 225:10–22PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Koubala BB, Mbome LI, Kansci G, Mbiapo FT, Crepeau MJ, Thibault JF, Ralet MC (2008) Food Chem 106:1202–1207CrossRefGoogle Scholar
  19. 19.
    Emaga TH, Ronkart SN, Robert C, Wathelet B, Paquot M (2008) Food Chem 108:463–471CrossRefGoogle Scholar
  20. 20.
    Emaga TH, Robert C, Ronkart SN, Wathelet B, Paquot M (2008) Bioresour Technol 99:4346–4354CrossRefGoogle Scholar
  21. 21.
    Yapo BM (2009) Biomacromolecules 10:717–721PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Qiu LP, Zhao GL, Wu H, Jiang L, Li XF, Liu JJ (2010) Carbohydr Polym 80:326–331CrossRefGoogle Scholar
  23. 23.
    Castillo-Israel KAT, Baguio SF, Diasanta MDB, Lizardo RCM, Dizon EI, Mejico MIF (2015) Int Food Res J 22:202–207Google Scholar
  24. 24.
    Oliveira TÍS, Rosa MF, Cavalcante FL, Pereira PHF, Moates GK, Wellner N, Mazzetto SE, Waldron KW, Azeredo HMC (2016) Food Chem 198:113–118PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Swamy GJ, Muthukumarappan K (2017) Food Chem 220:108–114PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Maran JP, Priya B, Al-Dhabi NA, Ponmurugan K, Moorthy IG, Sivarajasekar N (2017) Ultrason Sonochem 35:204–209PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Lin BC, Cze CY (2018) MATEC Web Conf. 1002:15–28. CrossRefGoogle Scholar
  28. 28.
    Mollea C, Chiampo F, Conti R (2008) Food Chem 107:1353–1356Google Scholar
  29. 29.
    Vriesmann LC, Amboni RDMC, Petkowicz CLO (2011) Ind Crop Prod 34:1173–1181CrossRefGoogle Scholar
  30. 30.
    Vriesmann LC, Teófilo RF, Petkowicz CLO (2011) Carbohydr Polym 84:1230–1236CrossRefGoogle Scholar
  31. 31.
    Vriesmann LC, Teófilo RF, Petkowicz CLO (2012) LWT - Food Sci Technol 49:108–116CrossRefGoogle Scholar
  32. 32.
    Chan SY, Choo WS (2013) Food Chem 141:3752–3758PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Jafari F, Khodaiyan F, Kiani H, Saeid S (2017) Carbohydr Polym 157:1315–1322PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Broxterman SE, Picouet P, Schols HA (2017) Carbohydr Polym 177:58–66PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Colodel C, Bagatin RMG, Tavares TM, Petkowicz CLO (2017) Carbohydr Polym 174:226–234PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Colodel C, Petkowicz CLO (2019) Food Hydrocoll 86:193–200CrossRefGoogle Scholar
  37. 37.
    Thirugnanasambandham K, Sivakumar V, Maran JP (2014) Carbohydr Polym 112:622–626PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Muhammad K, Izalin N, Zahari M, Gannasin SP, Adzahan NM, Bakar J (2014) Food Hydrocoll 42:289–297CrossRefGoogle Scholar
  39. 39.
    Tongkham N, Juntasalay B, Lasunon P, Sengkhamparn N (2017) Agric Nat Resour 51:262–267Google Scholar
  40. 40.
    Liang R-H, Chen J, Liu W, Liu C-M, Yu W, Yuan M, Zhou X-Q (2012) Carbohydr Polym 87:76–83CrossRefGoogle Scholar
  41. 41.
    Minjares-Fuentes R, Femenia A, Garau MC, Meza-Velázquez JA, Simal S, Rosselló C (2014) Carbohydr Polym 106:179–189PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Methacanon P, Krongsin J, Gamonpilas C (2014) Food Hydrocoll 35:383–391CrossRefGoogle Scholar
  43. 43.
    Bagherian H, Zokaee AF, Fouladitajar A, Mohtashamy M (2011) Chem Eng Process Process Intensif 50:1237–1243CrossRefGoogle Scholar
  44. 44.
    Xu Y, Zhang L, Bailina Y, Ge Z, Ding T, Ye X, Liu D (2014) J Food Eng 126:72–81CrossRefGoogle Scholar
  45. 45.
    Wang W, Ma X, Xu Y, Cao Y, Jiang Z, Ding T (2015) Food Chem 178:106–114PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Chen R, Jin C, Tong Z, Lu J, Tan L, Tian L, Chang Q (2016) Carbohydr Polym 136:187–197PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Liew SQ, Teoh WH, Tan CK, Yusoff R, Ngoh GC (2018) Int J Biol Macromol 116:128–135PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Wang W, Ma X, Jiang P, Hu L, Zhi Z, Chen J, Ding T, Ye X, Liu D (2016) Food Hydrocoll 61:730–739CrossRefGoogle Scholar
  49. 49.
    Wang W, Wu X, Chantapakul T, Wang D, Zhang S, Ma X, Ding T, Ye X, Liu D (2017) Food Res Int 102:101–110PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Guo X, Zhao W, Liao X, Hu X (2017) LWT - Food Sci Technol 79:640–646CrossRefGoogle Scholar
  51. 51.
    Begum R, Aziz MG, Uddin MB, Yusof YA (2014) Agric Sci Procedia 2:244–251CrossRefGoogle Scholar
  52. 52.
    Sundarraj AA, Thottiam VR, Sriramulu G (2018) Int J Biol Macromol 106:698–703PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Xu SY, Liu JP, Huang X, Du LP, Shi FL, Dong R, Huang XT, Zheng K, Liu Y, Cheong KL (2018) LWT—Food Sci Technol 90:577–582CrossRefGoogle Scholar
  54. 54.
    Yuliarti O, Goh KKT, Matia-Merino L, Mawson J, Brennan C (2015) Food Chem 187:290–296PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Koubala BB, Kansci G, Mbome LI, Crépeau MJ, Thibault JF, Ralet MC (2008) Food Hydrocoll 22:1345–1351CrossRefGoogle Scholar
  56. 56.
    Maran JP, Swathi K, Jeevitha P, Jayalakshmi J, Ashvini G (2015) Carbohydr Polym 123:67–71PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Wang M, Huang B, Fan C, Zhao K, Hu H, Xu X, Pan S, Liu F (2016) Int J Biol Macromol 91:794–803PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Oliveira AN, Paula DA, Oliveira EB, Saraiva SH, Stringheta PC, Ramos AM (2018) Int J Biol Macromol 113:395–402CrossRefGoogle Scholar
  59. 59.
    Raji Z, Khodaiyan F, Rezaei K, Kiani H (2017) Int J Biol Macromol 98:709–716PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Koubala BB, Christiaens S, Kansci G, Van Loey AM, Hendrickx ME (2014) Food Res Int 55:215–221CrossRefGoogle Scholar
  61. 61.
    Maran JP, Prakash KA (2015) Int J Biol Macromol 73:202–206PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Kliemann E, Simas KN, Amante ER, Prudêncio ES, Teófilo RF, Ferreira MMC, Amboni RDMC (2009) Int J Food Sci Technol 44:476–483CrossRefGoogle Scholar
  63. 63.
    Yapo BM (2009) J Agric Food Chem 57:1572–1578PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Lima MS, Paiva EP, Andrade SAC, Paixão JA (2010) Food Hydrocoll 24:1–7CrossRefGoogle Scholar
  65. 65.
    Kulkarni SG, Vijayanand P (2010) LWT—Food Sci Technol 43:1026–1031CrossRefGoogle Scholar
  66. 66.
    Canteri MHG, Scheer AP, Ginies C, Reich M, Renard CMCG, Wosiacki G (2012) J Food Process Eng 35:800–809CrossRefGoogle Scholar
  67. 67.
    Seixas FL, Fukuda DL, Turbiani FRB, Garcia PS, Petkowicz CLO (2014) Food Hydrocoll 38:186–192CrossRefGoogle Scholar
  68. 68.
    Liew SQ, Chin NL, Yusof YA (2014) Agric Agric Sci Procedia 2:231–236Google Scholar
  69. 69.
    Oliveira CF, Giordani D, Gurak PD, Cladera-Olivera F, Marczak LDF (2015) Innov Food Sci Emerg Technol 29:201–208CrossRefGoogle Scholar
  70. 70.
    Liew SQ, Chin NL, Yusof YA, Sowndhararajan K (2015) J Food Process Eng 39:501–511CrossRefGoogle Scholar
  71. 71.
    Oliveira CF, Giordani D, Lutckemier R, Deyse P, Cladera-Olivera F, Damasceno L, Marczak F (2016) LWT—Food Sci Technol 71:110–115CrossRefGoogle Scholar
  72. 72.
    Vasco-Correa J, Zapata AD (2017) LWT—Food Sci Technol 80:280–285CrossRefGoogle Scholar
  73. 73.
    Souza CG, Rodrigues THS, Silva LMA, Ribeiro PRV, Brito ES (2018) J Sci Food Agric 98:1362–1368PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Moura FA, Macagnan FT, Santos LR, Bizzani M, Petkowicz CLO, Silva LP (2017) J Food Sci Technol 54:3111–3117PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Pagan J, Ilbarz A, Llorca M, Pagan A, Barbosa-Cánovas GV (2001) Food Res Int 34:605–612CrossRefGoogle Scholar
  76. 76.
    Chaharbaghi E, Khodaiyan F, Saeid S (2017) Carbohydr Polym 173:107–113PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Basanta MF, Ponce NMA, Rojas AM, Stortz CA (2012) Carbohydr Polym 89:230–235PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Lira-Ortiz AL, Reséndiz-Vega F, Ríos-Leal E, Contreras-Esquivel JC, Chavarría-Hernández N, Vargas-Torres A, Rodríguez-Hernández AI (2014) Food Hydrocoll 37:93–99CrossRefGoogle Scholar
  79. 79.
    Moorthy IG, Maran JP, Surya SM, Naganyashree S, Shivamathi CS (2015) Int J Biol Macromol 72:1323–1328PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Abid M, Renard CMGC, Watrelot AA, Fendri I, Attia H, Ayadi MA (2016) Int J Biol Macromol 93:186–194PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Abid M, Cheikhrouhou S, Renard CMGC, Bureau S, Cuvelier G, Attia H, Ayadi MA (2017) Food Chem 215:318–325PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Yang X, Nisar T, Hou Y, Gou X, Sun L, Guo Y (2018) Food Hydrocoll 85:30–38CrossRefGoogle Scholar
  83. 83.
    Colodel C, Vriesmann LC, Petkowicz CLO (2018) Carbohydr Polym 195:120–127PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Ptichkina NM, Markina OA, Rumyantseva GN (2008) Food Hydrocoll 22:192–195CrossRefGoogle Scholar
  85. 85.
    Košťálová Z, Aguedo M, Hromádková Z (2016) Chem Eng Process Process Intensif 102:9–15CrossRefGoogle Scholar
  86. 86.
    Maran JP, Priya B (2015) Carbohydr Polym 115:732–738PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Yang Y, Wang Z, Hu D, Xiao K, Wu J (2018) Food Hydrocoll 79:189–196CrossRefGoogle Scholar
  88. 88.
    Li D, Jia X, Wei Z, Liu Z (2012) Carbohydr Polym 88:342–346CrossRefGoogle Scholar
  89. 89.
    Guo X, Meng H, Zhu S, Tang Q, Pan R, Yu S (2016) Carbohydr Polym 136:316–321PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Huang X, Li D, Wang L (2018) J Food Eng 218:44–49CrossRefGoogle Scholar
  91. 91.
    Grassino AN, Brncic M, Vikic-Topicc D, Rosa S, Dent M, Brncic SR (2016) Food Chem 198:93–100PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Morales-Contreras BE, Contreras-Esquivel JC, Wicker L, Ochoa-Mart LA (2017) J Food Sci 82:1594–1601PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Maran JP, Sivakumar V, Thirugnanasambandham K, Sridhar R (2014) Carbohydr Polym 101:786–791CrossRefGoogle Scholar
  94. 94.
    Voragen AGJ, Pilnik W, Thibault JF, Axelos MAV, Renard CMGC (1995) In: Stephen AM (ed) Food polysaccharides and their applications. Marcel Dekker, New York, pp 287–339Google Scholar
  95. 95.
    Ridley BL, O’Neill MA, Mohnen D (2001) Phytochemistry 57:929–967PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Leclere L, Van Cutsem P, Michiels C (2013) Front Pharmacol 4:1–8CrossRefGoogle Scholar
  97. 97.
    Neill MAO, Ishii T, Albersheim P, Darvill AG (2004) Annu Rev Plant Biol 55:109–139CrossRefGoogle Scholar
  98. 98.
    Willats WGT, Knox JP, Mikkelsen JD (2006) Trends Food Sci Technol 17:97–104CrossRefGoogle Scholar
  99. 99.
    Ngouémazong ED, Christiaens S, Shpigelman A, Van Loey A, Hendrickx M (2015) Compr Rev Food Sci Food Saf 14:705–718CrossRefGoogle Scholar
  100. 100.
    Mohnen D (2008) Curr Opin Plant Biol 11:266–277PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Gullon B, Gómez B, Martinéz-Sabajanes M, Yáñez R, Parajo JC, Alonso JL (2013) Food Sci Technol 30:153–161CrossRefGoogle Scholar
  102. 102.
    Canteri MHG, Fertonani HCR, Wasczynskj N, Wosiacki G (2005) Braz Arch Biol Technol 48:259–266CrossRefGoogle Scholar
  103. 103.
    Alba K, Laws AP, Kontogiorgos V (2015) Food Hydrocoll 43:726–735CrossRefGoogle Scholar
  104. 104.
    Peng X-Y, Mu T, Zhang M, Sun H, Chen J, Yu M (2016) Food Hydrocoll 60:161–169CrossRefGoogle Scholar
  105. 105.
    Wikiera A, Mika M, Starzy A (2015) Carbohydr Polym 134:251–257PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Roselló-Soto E, Parniakov O, Deng Q, Patras A, Koubaa M, Grimi N, Bousseta N, Tiwari BK, Vorobiev E, Lebovka N, Barba FJ (2015) Food Eng Rev 8:214–234CrossRefGoogle Scholar
  107. 107.
    Barba FJ, Zhu Z, Koubaa M, Sant’Ana AS, Orlien V (2016) Trends Food Sci Technol 49:96–109CrossRefGoogle Scholar
  108. 108.
    Marić M, Grassino AN, Zhu Z, Barba FJ, Brnčić M, Brnčić SR (2018) Trends Food Sci Technol 76:28–37CrossRefGoogle Scholar
  109. 109.
    Parniakov O, Barba FJ, Grimi N, Lebovka N, Vorobiev E (2016) Food Chem 192:842–848PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Chemat F, Rombaut N, Meullemiestre A, Turk M, Perino S, Fabiano-Tixier A-S, Abert-Vian M (2017) Innov Food Sci Emerg Technol 41:357–377CrossRefGoogle Scholar
  111. 111.
    Guo X, Han D, Xi H, Rao L, Liao X, Hu X, Wu J (2012) Carbohydr Polym 88:441–448CrossRefGoogle Scholar
  112. 112.
    Guo X, Zhao W, Pang X, Liao X, Hu X, Wu J (2014) Food Hydrocoll 35:217–225CrossRefGoogle Scholar
  113. 113.
    Wang X, Chen Q, Lü X (2014) Food Hydrocoll 38:129–137CrossRefGoogle Scholar
  114. 114.
    Thirugnanasambandham K, Sivakumar V (2015) Int J Biol Macromol 72:1351–1357PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Pandit SG, Vijayanand P, Kulkarni SG (2015) LWT—Food Sci Technol 64:1010–1014CrossRefGoogle Scholar
  116. 116.
    Roselló-Soto E, Galanakis CM, Brnčić M, Orlien V, Francisco J, Mawson R, Knoerzer B, Tiwari BJ, Barba FJ (2015) Trends Food Sci Technol 42:134–149CrossRefGoogle Scholar
  117. 117.
    Barba FJ, Brianceau S, Turk M, Boussetta N, Vorobiev E (2015) Food Bioprocess Technol 8:1139–1148CrossRefGoogle Scholar
  118. 118.
    Misra NN, Koubaa M, Roohinejad S, Juliano P, Alpas H, Inácio RS, Saraiva JA, Barba FJ (2017) Food Res Int 97:318–339PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Poojary MM, Orlien V, Passamonti P, Olsen K (2017) Food Chem 234:236–244PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Zhang T, Lan Y, Zheng Y, Liu F, Zhao D, Mayo KH, Zhou Y, Tai G (2016) Food Hydrocoll 58:113–119CrossRefGoogle Scholar
  121. 121.
    Morris VJ, Belshaw NJ, Waldron KW, Maxwell EG (2013) Bioact Carbohydr Diet Fibre 1:21–37CrossRefGoogle Scholar
  122. 122.
    Venzon SS, Canteri MHG, Granato D, Demczuk B, Maciel GM, Stafussa AP, Haminiuk CWI (2015) J Food Sci Technol 52:4102–4112PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Ma S, Wang Z (2013) Carbohydr Polym 92:1700–1704PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Staples M, Rolke J (2013) Modified pectins, composition and methods related thereto. US008420133B2Google Scholar
  125. 125.
    Grassino AN, Barba FJ, Brnčić M, Jose M, Lucini L, Brnčić SR (2018) Food Chem 266:47–55PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Ralet M, Crépeau M, Buchholt H (2003) Biochem Eng J 16:191–201CrossRefGoogle Scholar
  127. 127.
    Ranganna S (1995) In: Rangann S (ed) Handbook of analysis and quality control for fruits and vegetable, 2nd edn. Mc Graw Hill Publishers, New DelhiGoogle Scholar
  128. 128.
    McComb EA, McCready RM (1952) Anal Chem 24:1630–1632CrossRefGoogle Scholar
  129. 129.
    Scott RW (1979) Anal Chem 51:936–941CrossRefGoogle Scholar
  130. 130.
    Filisetti-Cozzi TMCC, Carpita NC (1991) Anal Biochem 197:157–162PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Anthon GE, Barrett DM (2008) Food Chem 110:239–247PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Yapo BM (2011) Carbohydr Polym 86:373–385CrossRefGoogle Scholar
  133. 133.
    Blumenkrantz N, Asboe-Hansen G (1973) Anal Biochem 54:484–489PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Garna H, Mabon N, Nott K, Wathelet B, Paquot M (2006) Food Chem 96:477–484CrossRefGoogle Scholar
  135. 135.
    Nagel A, Sirisakulwat S, Carle R, Neidhart S (2014) J Agric Food Chem 62:2037–2048PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Christiaens S, Uwibambe D, Uyttebroek M, Van Droogenbroeck B, Van Loey AM, Hendrickx ME (2015) LWT—Food Sci Technol 61:275–282CrossRefGoogle Scholar
  137. 137.
    Yapo BM (2010) Food Bioprod Process 88:283–290CrossRefGoogle Scholar
  138. 138.
    Garna H, Mabon N, Robert C, Cornet C, Nott K, Legros H, Wathelet B, Paquot M (2007) J Food Sci 72:1–9CrossRefGoogle Scholar
  139. 139.
    Müller-Maatsch J, Bencivenni M, Caligiani A, Tedeschi T, Bruggeman G, Bosch M, Petrusan J, Droogenbroeck BV, Elst K, Sforza S (2016) Food Chem 201:37–45PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Georgiev Y, Ognyanov M, Yanakieva I, Kussovski V, Kratchanova M (2012) J Biosci Biotechnol 1:223–233Google Scholar
  141. 141.
    Kurita O, Fujiwara T, Yamazaki E (2008) Carbohydr Polym 74:725–730CrossRefGoogle Scholar
  142. 142.
    Gnanasambandam R, Proctor A (2000) Food Chem 68:327–332CrossRefGoogle Scholar
  143. 143.
    Singthong J, Cui SW, Ningsanond S, Goff HD (2004) Carbohydr Polym 58:391–400CrossRefGoogle Scholar
  144. 144.
    Grasdalen H, Bakdy OE, Larsen BO (1988) Carbohydr Res 184:183–191CrossRefGoogle Scholar
  145. 145.
    Hestrin S (1949) J Biol Chem 180:249–261PubMedPubMedCentralGoogle Scholar
  146. 146.
    Yapo BM, Lerouge P, Thibault JF, Ralet MC (2007) Carbohydr Polym 69:426–435CrossRefGoogle Scholar
  147. 147.
    Gopi D, Kanimozhi K, Bhuvaneshwari N, Indira J, Kavitha L (2014) Spectrochim Acta A 118:589–597CrossRefGoogle Scholar
  148. 148.
    Kpodo FM, Agbenorhevi JK, Alba K, Bingham RJ, Oduro IN, Morris GA, Kontogiorgos V (2017) Food Hydrocoll 72:323–330CrossRefGoogle Scholar
  149. 149.
    Min B, Lim J, Ko S, Lee K-G, Lee SH, Lee S (2011) Bioresour Technol 102:3855–3860PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Hosseini SS, Khodaiyan F, Yarmand MS (2016) Carbohydr Polym 140:59–65PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Alba K, Kontogiorgos V (2017) Food Hydrocoll 68:211–218CrossRefGoogle Scholar
  152. 152.
    Leclere L, Fransolet M, Cambier P, El Bkassiny S, Tikad A, Dieu M, Vincent SP, Van Cutsem P, Michiels C (2016) Carbohydr Polym 137:39–51PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Platt D, Raz A (1992) J Natl Cancer Inst 84:438–442PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Yamada H (1996) Pectins Pectinase 14:173–190CrossRefGoogle Scholar
  155. 155.
    Miyazaki S, Kawasaki N, Nakamura T, Iwatsu M, Hayashi T, Hou WM, Attwood D (2000) Int J Pharm 204:127–132PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Liu L, Won YJ, Cooke PH, Coffin DR, Fishman ML, Hicks KB, Ma PX (2004) Biomaterials 25:3201–3210PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Fukumori T, Kanayama HO, Raz A (2007) Drug Resistance Updates 10:101–108PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Ovodova RG, Golovchenko VV, Popov SV, Popova GY, Paderin NM, Shashkov AS, Ovodov YS (2009) Food Chem 114:610–615CrossRefGoogle Scholar
  159. 159.
    Cipriani TR, Gracher AHP, Souza LM, Fonseca RJC, Belmiro CLR, Gorin PAJ, Sassaki GL, Iacomini M (2009) Thromb Haemost 101:860–866PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Wattanakorn N, Asavapichayont P, Nunthanid J, Limmatvapirat S, Sungthongjeen S, Chantasart D, Sriamornsak P (2010) AAPS 11:743–751Google Scholar
  161. 161.
    Fan L, Cao M, Gao S, Wang W, Peng K, Tan C, Wen F, Tao S, Xie W (2012) Carbohydr Polym 88:707–712CrossRefGoogle Scholar
  162. 162.
    Silva DC, Freitas ALP, Barros FCN, Lins KOAL, Alves APNN, Alencar NMN, Figueiredo IST, Pessoa C, Moraes MO, Costa-Lotufo LV, Feitosa JPA, MacIel JS, Paula RCM (2012) Carbohydr Polym 87:139–145CrossRefGoogle Scholar
  163. 163.
    Bayarri M, Oulahal N, Degraeve P, Gharsallaoui A (2014) J Food Eng 131:18–25CrossRefGoogle Scholar
  164. 164.
    Espinal-Ruiz M, Restrepo-Sánchez LP, Narváez-Cuenca CE (2016) Food Chem 209:144–153PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Gómez B, Gullón B, Yáñez R, Schols H, Alonso JL (2016) J Funct Foods 20:108–121CrossRefGoogle Scholar
  166. 166.
    Samout N, Bouzenna H, Dhibi S, Ncib S, Elfeki A (2016) Biomed Pharmacother 83:1233–1238PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Liu Y, Dong M, Yang Z, Pan S (2016) Int J Biol Macromol 89:484–488PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Kawarai T, Narisawa N, Yoneda S, Tsutsumi Y, Ishikawa J (2016) Arch Oral Biol 68:73–82PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Abu-Elsaad NM, Elkashef WF (2016) Cancer J Physiol Parmacol 94:554–562CrossRefGoogle Scholar
  170. 170.
    Harsha MR, Prakash CSV, Dharmesh SM (2016) Carbohydr Polym 138:143–155PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Zeeb B, Schöck V, Schmid N, Majer L, Herrmann K, Hinrichs J, Weiss J (2018) Food Funct 9:1647–1656PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Corrêa-Ferreira ML, Ferreira DM, Dallazen JL, Silva AMS, Werner MFP, Petkowicz CLO (2018) Int J Biol Macromol 107:2395–2403PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Lu Y, Zhang M, Zhao PEI, Jia MIN, Liu B, Jia Q, Guo JUN, Dou LIN, Li J (2017) Mol Med Rep 26:647–653CrossRefGoogle Scholar
  174. 174.
    Paderin NM, Polugrudov AS, Khramova DS, Popov SV (2017) Bull Exp Biol Med 163:419–421PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Mzoughi Z, Abdelhamid A, Rihouey C, Cerf D, Bouraoui A, Majdoub H (2018) Carbohydr Polym 185:127–137PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Zeng X, Wang X, Zhao H, Xi Y, Cao J, Jiang W (2018) Drug Chem Toxicol 545:1–8CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Flávia Roberta Buss Marenda
    • 1
  • Fernanda Mattioda
    • 2
  • Ivo Mottin Demiate
    • 3
  • Alicia de Francisco
    • 1
  • Carmen Lúcia de Oliveira Petkowicz
    • 4
  • Maria Helene Giovanetti Canteri
    • 5
  • Renata Dias de Mello Castanho Amboni
    • 1
    Email author
  1. 1.Department of Food Science and TechnologyFederal University of Santa CatarinaFlorianopolisBrazil
  2. 2.Department of Chemical EngineeringFederal University of ParanaCuritibaBrazil
  3. 3.Department of Food EngineeringState University of Ponta GrossaPonta GrossaBrazil
  4. 4.Department of Biochemistry and Molecular BiologyFederal University of ParanaCuritibaBrazil
  5. 5.Department of Chemistry and BiologyFederal University of Technology-ParanaFrancisco BeltrãoBrazil

Personalised recommendations