Advertisement

Environmentally Responsive Poly(N-isopropylacrylamide)-co-poly(acrylic acid) Hydrogels for Separation of Toxic Metals and Organic Explosive Compounds from Water

  • Veera M. BodduEmail author
  • Nathaniel K. Naismith
  • Hiren R. Patel
Original Paper
  • 17 Downloads

Abstract

Temperature and pH-sensitive hydrogels were prepared from N-isopropyl acrylamide and polyacrylic acid through co-polymerization using ammonium persulfate as the initiator, N,N,N’,N’-tetramethylenediamine as the activator and N,N’-methylene bisacrylamide as crosslinker. The gels were characterized on the basis of FTIR and NMR spectral analysis, SEM micrograms and swelling studies. The effect of pH and temperature on swelling behavior of these gels was investigated. Preliminary batch absorption experiments were conducted to explore the feasibility of separating As(V), Cr(VI), the explosive components cyclotrimethylene-trinitramine (RDX), and cyclotetramethylene-tetranitramine (HMX), from aqueous medium using the hydrogels. The results of the study indicated that the hydrogels prepared are stable and the gels have potential environmental applications for separating pollutants from water.

Keywords

Poly(N-isopropylacrylamide) Acrylic acid Temperature sensitive hydrogel pH sensitive hydrogel Arsenic Chromium 

References

  1. 1.
    Xue W, Champ S, Huglin MB, Jones TGJ (2004) Rapid swelling and deswelling in cryogels of crosslinked poly(N-isopropylacrylamide-co-acrylic acid. Eur Polym J 40:467CrossRefGoogle Scholar
  2. 2.
    Oh JS, Kim JM, Lee KJ, Bae YC (1999) Swelling behavior of N-isopropylacrylamide gel particles with degradable crosslinker. Eur Polym J 35:621CrossRefGoogle Scholar
  3. 3.
    Schild HG (1992) Poly(N-Isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249,CrossRefGoogle Scholar
  4. 4.
    Goycoolea FM, Arguelles-Monal WM, Lizardi J, Peniche C, Heras A, Galed G, Diaz EI (2007) Temperature and pH-sensitive chitosan hydrogels: DSC, rheological and swelling evidence of a volume phase transition. Polym Bull 58:225CrossRefGoogle Scholar
  5. 5.
    Vazquez B, Gurruchage M, Goni I, Narvarte E, Roman JS (1995) Synthesis and characterization of pH/temperature-sensitive hydrogels based on chitosan derivative. Polym Bull 17:3327CrossRefGoogle Scholar
  6. 6.
    Kataoka K, Koyo H, Tsuruta T (1995) Novel pH-sensitive hydrogels of segmented poly(amine ureas) having a repetitive array of polar and apolar units in the main chain. Macromolecules 28:3336CrossRefGoogle Scholar
  7. 7.
    Ma CS, Zhang W, Ciszkowska M (2001) Transport of ions and electrostatic interactions in thermoresponsive poly(N-isopropylacrylamide-co-acrylic acid) hydrogels: electroanalytical studies. J Phys Chem B 105:10446CrossRefGoogle Scholar
  8. 8.
    Choi Y-J, Yamaguchi T, Nakao SA (2000) Novel separation system using porous thermosensitive membranes. Ind Eng Chem Res 39:2491CrossRefGoogle Scholar
  9. 9.
    Ichikawa H, Fukumori Y (2000) A novel positively thermosensitive controlled-release microcapsule with membrane of nano-sized poly(N-isopropylacrylamide) gel dispersed in ethylcellulose matrix. J Control Release 63:107CrossRefGoogle Scholar
  10. 10.
    Verrion B, Kim SW, Bae YH (2000) Thermoreversible copolymer gels for extracellular matrix. J Biomed Mater Res 51:69CrossRefGoogle Scholar
  11. 11.
    Liu F, Tao GL, Zhuo RX (1993) Synthesis of thermal phase separating reactive polymers and their applications in immobilized enzymes. Polym J 25:561CrossRefGoogle Scholar
  12. 12.
    Ramos-Jacques AL, Lujan-Montelongo JA, Silva-Cuevas C, Courtez-Valadez M, Estevez M, Hernandez-Martinez AR (2018) Lead (II) removal by poly(N,N-dimethylacrylamide-co-2-hydroxyethyl methacrylate). Eur Poly J 101:262CrossRefGoogle Scholar
  13. 13.
    Li S, Liu J, Zhang X, Li L, Yu X, Huang Z (2015) Assembly of conducting polypyrrole hydrogels as a suitable adsorbent for Cr(VI) removal. Polym Bull 72:2891CrossRefGoogle Scholar
  14. 14.
    Huang H, Wu J, Lin X, Li L, Shang S, Yuen MC-W, Yan G (2013) Self-assembly of polyypyrrole/chitosan composite hydrogels. Carbohydr Polym 95:72CrossRefGoogle Scholar
  15. 15.
    Zhang E, Wang T, Zhao L, Sun W, Liu X, Tong Z (2014) Fast self-healing of graphene oxide-hectorite clay-poly(N,N-dimethacrylamide) hybride hydrogels realized by near-infrared irradiation. ACS Appl Mater Interfaces 6:22855CrossRefGoogle Scholar
  16. 16.
    Zhou L, Zhang F (2011) Thermo-sensitive and photoluminescent hydrogels: synthesis, characterization, and their drug-release property. Mat Sci Eng C 31:1429CrossRefGoogle Scholar
  17. 17.
    Said M, Atassi Y, Tally M, Khatib H (2018) Environmentally friendly chitosan-g-poly(acrylicacid-co-acrylamide)/ground basalt superabsorbent composite for agricultural applications. J Polym Environ 26:3937–3948Google Scholar
  18. 18.
    Lee W-F, Shieh C-H (1999) pH/thermoreversible hydrogels III: synthesis and swelling behaviors of (N-isopropylacrylamide-co-acrylic acid) copolymeric hydrogels. J Polym Res 6:41CrossRefGoogle Scholar
  19. 19.
    Kim S, Healy KE (2003) Synthesis and characterization of injectable poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with proteolytically degradable cross-links. Biomacromolecules 4:1214CrossRefGoogle Scholar
  20. 20.
    da Silva R, de Oliveira MG (2007) Effect of the cross-linking degree on the morphology of poly(NIPAAm-co-AAC) hydrogels. Polymer 48:4114CrossRefGoogle Scholar
  21. 21.
    Kim J-H, Lee TR (2007) Hydrogel-templated growth of large gold nanoparticles: synthesis of thermally responsive hydrogel-nanoparticle composites. Langmuir 23:6504CrossRefGoogle Scholar
  22. 22.
    Kim J, Singh N, Lyon LA (2007) Displacement-induced switching rates of bioresponsive hydrogel microlenses. Chem Mater 19:2527CrossRefGoogle Scholar
  23. 23.
    Zhang J, Chu L, L Y, Lee YM (2007) Dual thermo- and pH-sensitive poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with rapid response behaviors. Polymer 48:1718CrossRefGoogle Scholar
  24. 24.
    Alvarez-Lorenzo C, Concheiro A (2002) Reversible adsorption by a pH- and temperature-sensitive acrylic hydrogel. J Control Release 80:247CrossRefGoogle Scholar
  25. 25.
    Dhara D, Nisha CK, Chatterji PR (2001) Interpenetrating networks of poly(N-isopropylacrylamide) with anionic and cationic polymers. Macromol Chem Phys 202:3617CrossRefGoogle Scholar
  26. 26.
    Zhang X-Z, Yang YY, Wang FJ, Chung TS (2002) Thermosensitive poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with expanded network structures and improved oscillating swelling-deswelling properties. Langmuir 18:2013CrossRefGoogle Scholar
  27. 27.
    Tentem M, Casmiro T, Mano JF, Aguiar-Ricardo A (2007) Green synthesis of a temperature sensitive hydrogel. Green Chem 9:75CrossRefGoogle Scholar
  28. 28.
    Boddu VM, Abburi K, Talbott JL, Smith ED, Haasch ED (2008) R. Removal of arsenic (III) and arsenic (V) from aqueous medium using chitosan-coated biosorbent. Water Res 42:633CrossRefGoogle Scholar
  29. 29.
    Boddu VM, Abburi K, Talbott JL, Smith ED (2003) Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent. Environ Sci Technol 37:4449–4456CrossRefGoogle Scholar
  30. 30.
    Boddu VM, Costales-Nieves C, Damavarapu R, Viswanath DS, Shukla MK (2017) Physical properties of select explosive components for assessing their fate and transport in the environment. In: Shukla MK, Boddu V, Steevens J, Damavarapu R, Leszcynski J (eds) Energetic materials: from cradle to grave. Springer International Publishing AG, Cham, p 343–371Google Scholar
  31. 31.
    Bruice PY (2004) Organic chemistry, 4th edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  32. 32.
    Brandolini AJ, Hills DD (2000) NMR spectra of polymers and polymer additives, 1st Edn, Marcel Dekker, Inc., New YorkCrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2019

Authors and Affiliations

  • Veera M. Boddu
    • 1
    • 2
    Email author
  • Nathaniel K. Naismith
    • 2
  • Hiren R. Patel
    • 2
  1. 1.National Center for Agricultural Utilization ResearchUSDA Agricultural Research ServicePeoriaUSA
  2. 2.Environmental Processes Branch, Construction Engineering Research LaboratoryU.S Army Engineer Research & Development CenterChampaignUSA

Personalised recommendations