Advertisement

Journal of Polymers and the Environment

, Volume 27, Issue 2, pp 352–363 | Cite as

Photodegradation and Biodegradation Under Thermophile Conditions of Mulching Films Based on Poly(Butylene Adipate-co-Terephthalate) and Its Blend with Poly(Lactic Acid)

  • A. Morro
  • F. Catalina
  • E. Sanchez-León
  • C. AbrusciEmail author
Original Paper
  • 52 Downloads

Abstract

Two commercial mulching films based on aliphatic–aromatic copolyesters, poly(butylene adipate-co-terephthalate) (PBAT) and its blend with poly(lactic acid) (PBAT/PLA) were selected to study their photodegradation and their biodegradation under thermophile conditions. The films were buried in an agricultural field and bacteria were isolated from these. Bacterial strains were characterized with a combination of culture-dependent methods and sequencing of part of the 16S ribosomal RNA gene (rDNA). The most prevalent genus isolated was Bacillus and other related genera were found as well. Consortia of the isolated indigenous bacterial strains, IDN-EF and IDN-EC, and an additional consortia that had been previously isolated from exposed polyethylene, Bacillus-MIX, were prepared to perform the biodegradation assay at 45 °C on highly photodegraded films. Changes in the films were studied using chemiluminescence, ATR–FTIR, contact angle, SEM, GPC, DSC and TGA. A biodegradation assay was also performed on the four monomers that constitute the polymers using Bacillus subtilis and Bacillus licheniformis. Mineralization was evaluated by carbon dioxide measurements using an indirect impedance technique. This technique showed that overall there was a higher mineralization for the photodegraded materials. However, the biodegradation was most efficient when B. subtilis was present in the bacterial consortium and especially when the materials had been previously photodegraded.

Keywords

Poly(butylene adipate-co-terephthalate) Poly(lactic acid) Photodegradation Biodegradation Mulching films 

Notes

Acknowledgements

This study was supported by MINECO (Project Ref. MAT2017-88923) and UAM (Project Ref. G.C:108/ATO).

References

  1. 1.
    Hopewell J, Dvorak R, Kosior E (2009) Philos Trans R Soc Lond B Biol Sci 364:2115–2126CrossRefGoogle Scholar
  2. 2.
    Kasirajan S, Ngouajio M (2012) Agron Sustain Dev 32:501–529CrossRefGoogle Scholar
  3. 3.
    Jayanth D, Kumar PS, Nayak GC, Kumar JS, Pal SK, Rajasekar R (2018) J Polym Environ 26:838.  https://doi.org/10.1007/s10924-017-0985-6 CrossRefGoogle Scholar
  4. 4.
    Gu JD, Ford TE, Mitchell R (2011) Microbial degradation of materials: general processes, Wiley, New York, 351–363Google Scholar
  5. 5.
    Kijchavengkul T, Auras R, Rubino M, Ngouajio M, Fernandez RT (2008) Chemosphere 71:942–953CrossRefGoogle Scholar
  6. 6.
    Stloukal P, Verney V, Commereuc S, Rychly J, Matisová-Rychlá L, Pis V, Koutny M (2012) Chemosphere 88:1214–1219CrossRefGoogle Scholar
  7. 7.
    Touchaleaume F, Martin-Closas L, Angellier-Coussy H, Chevillard A, Cesar G, Gontard N, Gastaldi E (2016) Chemosphere 144:433–439CrossRefGoogle Scholar
  8. 8.
    Gosari G, Pantani R (2013) Polym Degrad Stab 98:1006–1014CrossRefGoogle Scholar
  9. 9.
    Itävaara M, Karjomaa S, Selin J-F (2002) Chemosphere 46:879–885CrossRefGoogle Scholar
  10. 10.
    Saadi Z, Cesar G, Bewa H, Benguigui L (2013) J Polym Environ 21:893–901CrossRefGoogle Scholar
  11. 11.
    Palsikowski PA, Kuchnier CN, Pinheiro IF, Morales AR (2018) J Polym Environ 26:330–341CrossRefGoogle Scholar
  12. 12.
    Kyrikou I, Briassoulis D (2007) J Polym Environ 15:125–150CrossRefGoogle Scholar
  13. 13.
    Kijchavengkul T, Auras R, Rubino M, Ngouajio M, Fernandez RT (2008) Chemosphere 71:1607–1616CrossRefGoogle Scholar
  14. 14.
    Abrusci C, Pablos JL, Corrales T, López-Marín J, Marín I, Catalina F (2011) Int Biodeterior Biodegrad 65:451–459CrossRefGoogle Scholar
  15. 15.
    Vlamakis H, Chai Y, Beauregard P, Losick R, Kolter R (2013) Nat Rev Microbiol 11:157–168CrossRefGoogle Scholar
  16. 16.
    Donato V, Ayala FR, Cogliati S, Bauman C, Costa JG, Leñini C, Grau R (2017) Nat Commun 8:14332CrossRefGoogle Scholar
  17. 17.
    Abrusci C, Martín-González A, Amo AD, Catalina F, Bosch P, Corrales T (2004) J Photochem Photobiol A Chem 163:537–546CrossRefGoogle Scholar
  18. 18.
    Abrusci C, Marquina D, Del Amo A, Catalina F (2007) Int Biodeterior Biodegrad 60:137–143CrossRefGoogle Scholar
  19. 19.
    Pablos JL, Abrusci C, Marín I, López-Marín J, Catalina F, Espí E, Corrales T (2010) Polym Degrad Stab 95:2057–2064CrossRefGoogle Scholar
  20. 20.
    Catalina F, Peinado C, Allen NS, Corrales T (2002) J Polym Sci A Polym Chem 40:3312–3326CrossRefGoogle Scholar
  21. 21.
    Witt U, Einig T, Yamamoto M, Kleeberg I, Deckwer W-D, Müller R-J (2001) Chemosphere 44:289–299CrossRefGoogle Scholar
  22. 22.
    Abrusci C, Martín-González A, Del Amo A, Corrales T, Catalina F (2004) Polym Degrad Stab 86:283–291CrossRefGoogle Scholar
  23. 23.
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) Nucleic Acids Res 25:4876–4882CrossRefGoogle Scholar
  24. 24.
    Ikada E (1999) J Photopolym Sci Technol 12:251–256CrossRefGoogle Scholar
  25. 25.
    Morro A, Catalina F, Corrales T, Pablos JL, Marin I, Abrusci C (2016) Carbohydr Polym 149:68–76CrossRefGoogle Scholar
  26. 26.
    Rychlý J, Rychlà L, Stloukal P, Koutný M, Pekarová S, Verney V (2013) Polym Degrad Stabil 98:2556–2563CrossRefGoogle Scholar
  27. 27.
    Hu X, Osaki S, Hayashi M, Kaku M, Katuen S, Kobayashi H, Kawai F (2008) J Polym Environ 16:103–108CrossRefGoogle Scholar
  28. 28.
    Hadad D, Geresh S, Sivan A (2005) J Appl Microbiol 98:1093–1100CrossRefGoogle Scholar
  29. 29.
    Kijchavengkul T, Auras R, Rubino M, Selke S, Ngouajio M, Fernandez RT (2010) Polym Degrad Stab 95:2641–2647CrossRefGoogle Scholar
  30. 30.
    Albertsson A, Karlsson S (1990) In: Barenberg S, Brash J, Narayan R, Redpath R (eds) First international scientific consensus workshop on degradable materials. CRC Press, Boca Raton, FLGoogle Scholar
  31. 31.
    Gopferich A (1996) Biomaterials 17:103–114CrossRefGoogle Scholar
  32. 32.
    Díaz A, Katsarava R, Puiggalí J (2014) Int J Mol Sci 15:7064–7123CrossRefGoogle Scholar
  33. 33.
    Abrusci C, Marquina D, Santos A, Del Amo A, Corrales T, Catalina F (2007) J Photochem Photobiol A Chem 185:188–197CrossRefGoogle Scholar
  34. 34.
    San Miguel V, Peinado C, Catalina F, Abrusci C (2009) Int Biodeterior Biodegrad 63:217–223CrossRefGoogle Scholar
  35. 35.
    Stloukal P, Jandák J, Husárová L, Koutny M, Commereuc S, Verney V (2010) In: Development, energy, environment, economics (DEEE) WSEAS conference proceedings, Puerto de la Cruz, ISSN, pp. 118–121Google Scholar
  36. 36.
    Msadek T, Dartois V, Kunst F, Herbaud ML, Denizot F, Rapoport G (1998) Mol Microbiol 27:899–914CrossRefGoogle Scholar
  37. 37.
    Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM (2000) Microbiol Mol Biol Rev 64:515–547CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. Morro
    • 1
  • F. Catalina
    • 2
  • E. Sanchez-León
    • 1
  • C. Abrusci
    • 1
    Email author
  1. 1.Departamento de Biología Molecular, Facultad de CienciasUniversidad Autónoma de Madrid, UAMMadridSpain
  2. 2.Departamento de Química Macromolecular AplicadaInstituto de Ciencia y Tecnología de 6 Polímeros, CSICMadridSpain

Personalised recommendations