Journal of Polymers and the Environment

, Volume 27, Issue 2, pp 364–371 | Cite as

Effect of the Phenological Stage in the Natural Rubber Latex Properties

  • Natalia Trinidad Zapata-Gallego
  • Mónica Lucía Álvarez-LáinezEmail author
Original Paper


Natural Rubber Latex (NRL) from Hevea brasiliensis is a material studied because of their industrial applications. For its natural origin, it is possible to find rubber particles, proteins, phospholipids and ashes. These non-rubber content are responsible for the latex colloidal stability. H. brasiliensis tree goes through four stages during the year, changing its nutritional requirements and as a result the rubber yield and stability. Most studies have correlated latex characteristics and yield with tree age and clonal origin but none of them with phenological stages. The impact of the phenological stage on the material properties has not been completely identified yet. In this work, the influence of the clonal origin and the phenological stage with the material properties is studied. Thermal behavior, microstructural analysis, morphological study, colloidal stability and rheology are analyzed for FX3864, IAN710 and AIN873 clones during 1 year. NRL is an amorphous material but during the high-yield period, a melting point is observed. Flowering is the stage when phospholipids, protein and isoelectric point are higher. Phenological stages do not affect the rubber, but the main changes are in the non-rubber content.


Rubber latex Phenological stages Non-rubber content Colloidal stability Rheology 



The authors like to acknowledge the financial support from Eafit University, Royalties General Program of Colombia (Programa General de Regalías) and all the institutions involved in this project under the contract number 4600001081-2013.


  1. 1.
    Tuampoemsab S (2008) Control of the degradation of natural rubber: analysis and application of naturally occurring anti-and pro-oxidants in natural rubber, Mahidol UniversityGoogle Scholar
  2. 2.
    Tarachiwin L, Sakdapipanich J, Ute K et al (2005) Structural characterization of α-terminal group of natural rubber. 1. Decomposition of branch-points by lipase and phosphatase treatments. Biomacromolecules 6:1851CrossRefGoogle Scholar
  3. 3.
    Sansatsadeekul J, Sakdapipanich J, Rojruthai P (2011) Characterization of associated proteins and phospholipids in natural rubber latex. J Biosci Bioeng 111:628CrossRefGoogle Scholar
  4. 4.
    Krisnan B et al (2015) Growth assessment of popular clones of natural rubber (Hevea brasiliensis) under warm dry climatic conditions of chattisgarh state, central India. J Exp Biol Agric Sci 3:157Google Scholar
  5. 5.
    Silva JQ, Scaloppi Júnior EJ, Moreno RMB et al (2012) Producción y propiedades químicas del caucho en clones de Hevea según los estados fenológicos. Pesqui Agropecu Bras 47:1066CrossRefGoogle Scholar
  6. 6.
    Rahman AYA, Usharraj AO, Misra BB et al (2013) Draft genome sequence of the rubber tree Hevea brasiliensis. BMC Genom 14:75CrossRefGoogle Scholar
  7. 7.
    Gonçalves PDS, Scaloppi Júnior EJ, Martins MA et al (2011) Assessment of growth and yield performance of rubber tree clones of the IAC 500 series. Pesqui Agropecu Bras 46:1643CrossRefGoogle Scholar
  8. 8.
    Azabache L (2012) Proyecto de factibilidad para la producción de caucho natural (Hevea Brasiliensis) en el Municipio de Puerto Carreño Vichada, pp 1–87Google Scholar
  9. 9.
    Floriano JF, Da Mota LSLS, Furtado EL et al (2014) Biocompatibility studies of natural rubber latex from different tree clones and collection methods. J Mater Sci Mater Med 25:461CrossRefGoogle Scholar
  10. 10.
    Malmonge JA, Camillo EC, Moreno RMB, Mattoso LHC, McMahan CM (2009) Comparative study on the technological properties of latex and natural rubber from Hancornia speciosa Gomes and Hevea brasiliensis. J Appl Polym Sci 111:2986CrossRefGoogle Scholar
  11. 11.
    Spanò D, Pintus F, Mascia C et al (2012) Extraction and characterization of a natural rubber from Euphorbia characias latex. Biopolymers 97:589CrossRefGoogle Scholar
  12. 12.
    Haque ME, Dafader NC, Akhtar F, Ahmad MU (1995) Influence of the variation of latex clone on the mechanical properties of the radiation vulcanized natural rubber latex film. Radiat Phys Chem Oxf Engl 46:119CrossRefGoogle Scholar
  13. 13.
    De Oliveira L, De Rosa D, De Arruda E et al (2004) Comparative studies of latex obtained of rubber tree clones (Hevea brasiliensis) - series IAC 328 - Votuporanga - sp. J Therm Anal Calorim 75:495CrossRefGoogle Scholar
  14. 14.
    Quesada-Méndez I, Aristizábal-Gutiérrez F, Montoya-Castaño D (2012) Caracterización de dos parámetros del látex de clones de Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg. en la altillanura Colombiana. Colomb For 15:139CrossRefGoogle Scholar
  15. 15.
    Moreno RMB, Ferreira M, Gonçalves PDS, Mattoso LHC (2005) Technological properties of latex and natural rubber of Hevea brasiliensis clones. Sci Agric 62:122CrossRefGoogle Scholar
  16. 16.
    Sakdapipanich J, Kalah R, Nimpaiboon A, Ho CC (2015) Influence of mixed layer of proteins and phospholipids on the unique film formation behavior of Hevea natural rubber latex. Colloids Surf A 466:100CrossRefGoogle Scholar
  17. 17.
    Rolere S, Liengprayoon S, Vaysse L, Sainte-Beuve J:Bonfils F (2015) Investigating natural rubber composition with Fourier transform infrared (FT-IR) spectroscopy: a rapid and non-destructive method to determine both protein and lipid contents simultaneously. Polym Test 43:83CrossRefGoogle Scholar
  18. 18.
    Ortolani AA, Sentelhas PC, Camargo MBP, Pezzopane JEM, Gonçalves PDS (1998) Agrometeorological model for seasonal rubber tree yield. Indian J Nat Rubber Res 11:8Google Scholar
  19. 19.
    Priyadarshan P (2011) Biology of Hevea rubber. CABI, MassachusettsCrossRefGoogle Scholar
  20. 20.
    Kawahara S et al (2000) Crystallization behavior and strength of natural rubber: skim rubber, deproteinized natural rubber, and pale crepe. J Appl Polym Sci 78:1510CrossRefGoogle Scholar
  21. 21.
    Hamdan S, Muhamad M, Hassan J (2000) Thermal analysis of natural rubber Hevea Brasiliensis latex. J Rubber Res 3:25Google Scholar
  22. 22.
    Kawahara S, Takano K, Yunyongwattanakorn J et al (2004) Crystal nucleation and growth of natural rubber purified by deproteinization and trans-esterification. J Polym 36:361CrossRefGoogle Scholar
  23. 23.
    Tarachiwin L, Sakdapipanich JT, Tanaka Y (2003) Gel formation in natural rubber latex: 2. Effect of magnesium ion. Rubber Chem Technol 76:1185CrossRefGoogle Scholar
  24. 24.
    Nawamawat K, Sakdapipanich JT, Ho CC et al (2011) Surface nanostructure of Hevea brasiliensis natural rubber latex particles. Colloids Surf A 390:157CrossRefGoogle Scholar
  25. 25.
    Khandal RK, Tadros TF (1988) Application of viscoelastic measurements to the investigation of the swelling of sodium montmorillonite suspensions. J Colloid Interface Sci 125:122CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Product Design EngineeringUniversidad EafitMedellínColombia

Personalised recommendations