Advertisement

Journal of Polymers and the Environment

, Volume 27, Issue 1, pp 189–197 | Cite as

Dispersion Characteristics and Curing Behaviour of Waterborne UV Crosslinkable Polyurethanes Based on Renewable Dimer Fatty Acid Polyesters

  • I. Etxaniz
  • O. Llorente
  • J. Aizpurua
  • L. Martín
  • A. González
  • L. IrustaEmail author
Original Paper
  • 44 Downloads

Abstract

In the last few years there has been a great deal of interest in modifying the methodologies for obtaining polyurethanes using more sustainable strategies. Following this tendency, in the present work, waterborne UV-curable polyurethanes were synthesized using commercially available dimer fatty acid based polyols obtained from renewable resources (Priplast from Croda). The polyols, characterized by proton nuclear magnetic resonance (1H NMR), differential scanning calorimetry (DSC) and size exclusion chromatography (GPC–SEC), were semicrystalline and presented very broad melting related with their complex molecular weight distribution. Different polyurethane dispersions were obtained by changing the percentage of the hard segment. Comparing with waterborne polyurethane dispersions obtained from non-renewable resources, the dispersions showed higher particle size even using similar or higher amounts of internal emulsifier. The curing behaviour was characterized by photo-differential scanning calorimetry (Photo-DSC) and the results showed that the conversion and polymerization rate decreased with the hard segment content and temperature. The obtained products displayed good thermal characteristics with phase-separated structures.

Keywords

Waterborne UV curable polyurethanes Dimer fatty polyester Renewable materials 

Notes

Acknowledgements

The authors acknowledge the University of the Basque Country UPV/EHU (UFI 11/56), the Diputación Foral de Gipuzkoa (OF218) and, the Basque Government (Ayuda a grupos de investigación del sistema universitario vasco IT618-13) for the funding received to develop this work. Technical and Human support provided by Macrobehavior-Mesostructure-Nanotechnology and NMR SGiker services of UPV/EHU is also gratefully acknowledged.

References

  1. 1.
    Cheng HN, Gross NA, Smith PB (2015) ACS symposium series. American Chemical Society, Washington DCGoogle Scholar
  2. 2.
    Gandini A, Belgacem MN (2002) J Polym Environ 10:105CrossRefGoogle Scholar
  3. 3.
    Gandini A (2008) Macromolecules 41:9491CrossRefGoogle Scholar
  4. 4.
    Pomponi F, Moncaster A (2017) J Clean Prod 143:710CrossRefGoogle Scholar
  5. 5.
    Winans K, Kendall A, Deng H (2017) Renew Sustain Energy Rev 68:825CrossRefGoogle Scholar
  6. 6.
    Noreen A, Zia KM, Zuber M, Tabasum S, Zahoor AF (2016) Prog Org Coat 91:25CrossRefGoogle Scholar
  7. 7.
    Poussard L, Lazko J, Mariage J, Raquez JM, Dubois P (2016) Prog Org Coat 97:175CrossRefGoogle Scholar
  8. 8.
    Sakulsaknimitr W, Wirasate S, Pipatpanyanugoon K, Atorngitjawat P (2015) J Polym Environ 23:216CrossRefGoogle Scholar
  9. 9.
    Cateto CA, Barreiro MF, Rodrigues AE, Belgacem MN (2011) React Funct Polym 71:863CrossRefGoogle Scholar
  10. 10.
    Gurunathan T, Mohanty S, Nayak SK (2015) Prog Org Coat 80:39CrossRefGoogle Scholar
  11. 11.
    Calvo-Correas T, Santamaria-Echart A, Saralegi A, Martin L, Valea A, Corcuera MA, Eceiza A (2015) Eur Polym J 70:173CrossRefGoogle Scholar
  12. 12.
    Cornille A, Auvergne R, Figovsky O, Boutevin B, Caillol S (2017) Eur Polym J 87:535CrossRefGoogle Scholar
  13. 13.
    Rix E, Grau E, Chollet G, Cramail H (2016) Eur Polym J 84:863CrossRefGoogle Scholar
  14. 14.
    Maisonneuve L, Lamarzelle O, Rix E, Grau E, Cramail H (2015) Chem Rev 115:12407CrossRefGoogle Scholar
  15. 15.
    Sardon H, Pascual A, Mecerreyes D, Taton D, Cramail H, Hedrick JL (2015) Macromolecules 48:3153CrossRefGoogle Scholar
  16. 16.
    Sardon H, Irusta L, Fernández-Berridi MJ (2009) Prog Org Coat 66:291CrossRefGoogle Scholar
  17. 17.
    Nanda AK, Wicks DA, Madbouly SA, Otaigbe JU (2005) J Appl Polym Sci 98:2514CrossRefGoogle Scholar
  18. 18.
    Sardon H, Irusta L, Fernández-Berridi MJ, Luna J, Lansalot M, Bourgeat-Lami E (2011) J Appl Polym Sci 120:2054CrossRefGoogle Scholar
  19. 19.
    Gandini A, Lacerda TM (2015) Prog Polym Sci 48:1CrossRefGoogle Scholar
  20. 20.
    Lligadas G, Ronda JC, Galiá M, Cádiz V (2013) Mater Today 16:337CrossRefGoogle Scholar
  21. 21.
    Kathalewar M, Sabnis A, D’Melo D (2014) Prog Org Coat 77:616CrossRefGoogle Scholar
  22. 22.
    Bueno-Ferrer C, Hablot E, Garrigós MC, Bocchini S, Averous L, Jiménez A (2012) Polym Degrad Stab 97:1964CrossRefGoogle Scholar
  23. 23.
    Palanisamy A, Rao BS, Mehazabeen S (2011) J Polym Environ 19:698CrossRefGoogle Scholar
  24. 24.
    Khanderay JC, Gite VV (2017) Green Mater 5:109Google Scholar
  25. 25.
    Rajput SD, Mahulikar PP, Gite VV (2014) Prog Org Coat 77:38CrossRefGoogle Scholar
  26. 26.
    Ni B, Yang L, Wang C, Wang L, Finlow DE (2010) J Therm Anal Calorim 100:239CrossRefGoogle Scholar
  27. 27.
    Bullermann J, Friebel S, Salthammer T, Spohnholz (2013) Prog Org Coat 76:609CrossRefGoogle Scholar
  28. 28.
    Jiang L, Xu Q, Hu CP (2006) J Nanomater 2006:1CrossRefGoogle Scholar
  29. 29.
    Liu X, Xu K, Liu H, Cai H, Su J, Fu Z, Guo Y, Chen M (2011) Prog Org Coat 72:612CrossRefGoogle Scholar
  30. 30.
    Li Y, Noordover BAJ, van Benthem RATM, Koning CE (2014) Eur Polym J 52:12CrossRefGoogle Scholar
  31. 31.
    Li Y, Noordover BAJ, van Benthem RATM, Koning CE (2015) Prog Org Coat 86:134CrossRefGoogle Scholar
  32. 32.
    Fertier L, Koleilat H, Stemmelen M, Giani O, Joly-Duhamel C, Lapinte V, Robin JJ (2013) Prog Polym Sci 38:932CrossRefGoogle Scholar
  33. 33.
    Mishraab V, Mohantya I, Patel MR, Patel KI (2015) Int J Polym Anal Charact 20:504CrossRefGoogle Scholar
  34. 34.
    Chang CW, Lu KT (2013) Prog Org Coat 76:1024CrossRefGoogle Scholar
  35. 35.
    Zhang P, Zhang X, Dai J (2011) Polym Mater Sci Eng 10:23Google Scholar
  36. 36.
    Llorente O, Fernández-Berridi MJ, González A, Irusta L (2016) Prog Org Coat 99:437CrossRefGoogle Scholar
  37. 37.
    Jiang L, Xu Q, Hu CP (2006) J Nanomater 14906:1CrossRefGoogle Scholar
  38. 38.
    Santiago A, Martin L, Iruin JJ, Fernández-Berridi MJ, González A, Irusta L (2014) Prog Org Coat 77:798CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.POLYMAT, Department of Polymer Science and TechnologyUniversity of the Basque Country UPV-EHUDonostia/San SebastianSpain
  2. 2.Macrobehaviour-Mesostructure-Nanotechnology SGIker Service, Polytechnic SchoolUniversity of the Basque Country UPV-EHUDonostia/San SebastianSpain

Personalised recommendations