Journal of Polymers and the Environment

, Volume 27, Issue 1, pp 210–223 | Cite as

Arabic Gum as Bio-Synthesizer for Ag–Au Bimetallic Nanocomposite Using Seed-Mediated Growth Technique and Its Biological Efficacy

  • Hossam E. EmamEmail author
Original Paper


Bio-synthesis of nanostructures is an ever green approach; therefore, the current work attempts to use Arabic gum as bio-synthesizer for manufacturing Ag–Au bimetallic nanocomposite, using seed-mediated growth technique. The relevance of the as-used natural gums for manufacturing of Ag–Au nanocomposite in quite simple, energy saving and cost effective methodology, has been successfully approved. Arabic gum acted concurrently as a reducer for metal ions to nano-sized structures and crystal growth modifier of the so-generated nanocomposite. Monitoring of interchanging in size distribution of the as-produced bimetallic nanocomposite by the effect of the gum concentration, concentration of nanometals precursors, their addition sequencing in reaction liquor, and reaction temperature, was illustrated and well characterized. UV–Visible spectra showed that the characteristic surface plasmon resonance peak for Ag–Au bimetallic nanocomposite was observed at 480–495 nm and XRD patterns confirmed the preparation of bimetallic nanostructures. According to zetasizer analyses and TEM micrographs, small sized (3.1 nm) Ag–Au bimetallic nanocomposite with narrow size distribution (1–7 nm) were obtained. The all prepared bimetallic nanocomposite showed good stability with polydispersity index ranged in 0.203–0.530. The mechanism of nanostructures’ generation was suggested and approved using FT-IR, 1HNMR and 13CNMR spectra. The prepared Ag–Au bimetallic nanocomposites showed excellent antibacterial activity against both of gram + ve and gram − ve strains.


Arabic gum Bio-synthesizer Seed-mediated growth Ag–Au bimetallic nanocomposite 


Compliance with Ethical Standards

Conflict of interest

The author wants to declare that no scientific or financial conflicts of interest exist.


  1. 1.
    Abdel-Halim E, El-Rafie M, Al-Deyab SS (2011) Polyacrylamide/guar gum graft copolymer for preparation of silver nanoparticles. Carbohydr Polym 85(3):692–697CrossRefGoogle Scholar
  2. 2.
    Ahmed HB, Abdel-Mohsen A, Emam HE (2016) Green-assisted tool for nanogold synthesis based on alginate as a biological macromolecule. Rsc Adv 6(78):73974–73985CrossRefGoogle Scholar
  3. 3.
    Ahmed HB, Zahran M, Emam HE (2016) Heatless synthesis of well dispersible Au nanoparticles using pectin biopolymer. Int J Biol Macromol 91:208–219CrossRefGoogle Scholar
  4. 4.
    ASTM (2001) E2149-10: standard test method for determining the antimicrobial activity of immobilized antimicrobial agents under dynamic contact conditions. ASTM, West Conshohocken, PAGoogle Scholar
  5. 5.
    Bandyopadhyaya R, Nativ-Roth E, Regev O, Yerushalmi-Rozen R (2002) Stabilization of individual carbon nanotubes in aqueous solutions. Nano Lett 2(1):25–28CrossRefGoogle Scholar
  6. 6.
    Banerjee M, Sharma S, Chattopadhyay A, Ghosh SS (2011) Enhanced antibacterial activity of bimetallic gold-silver core–shell nanoparticles at low silver concentration. Nanoscale 3(12):5120–5125CrossRefGoogle Scholar
  7. 7.
    Bankura K, Maity D, Mollick MMR, Mondal D, Bhowmick B, Roy I, Midya T, Sarkar J, Rana D, Acharya K (2014) Antibacterial activity of Ag–Au alloy NPs and chemical sensor property of Au NPs synthesized by dextran. Carbohydr Polym 107:151–157CrossRefGoogle Scholar
  8. 8.
    Bright RM, Musick MD, Natan MJ (1998) Preparation and characterization of Ag colloid monolayers. Langmuir 14(20):5695–5701CrossRefGoogle Scholar
  9. 9.
    Carnes CL, Klabunde KJ (2000) Synthesis, isolation, and chemical reactivity studies of nanocrystalline zinc oxide. Langmuir 16(8):3764–3772CrossRefGoogle Scholar
  10. 10.
    Chen D-H, Chen C-J (2002) Formation and characterization of Au–Ag bimetallic nanoparticles in water-in-oil microemulsions. J Mater Chem 12(5):1557–1562CrossRefGoogle Scholar
  11. 11.
    Cui SW (2005) Food carbohydrates: chemistry, physical properties, and applications. CRC Press, Boca RatonCrossRefGoogle Scholar
  12. 12.
    Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346CrossRefGoogle Scholar
  13. 13.
    Daoub RM, Elmubarak AH, Misran M, Hassan EA, Osman ME (2016) Characterization and functional properties of some natural Acacia gums. J Saudi Soc Agric Sci. Google Scholar
  14. 14.
    Devarajan S, Bera P, Sampath S (2005) Bimetallic nanoparticles: a single step synthesis, stabilization, and characterization of Au–Ag, Au–Pd, and Au–Pt in sol–gel derived silicates. J Colloid Interface Sci 290(1):117–129CrossRefGoogle Scholar
  15. 15.
    Devi DK, Pratap SV, Haritha R, Sivudu KS, Radhika P, Sreedhar B (2011) Gum acacia as a facile reducing, stabilizing, and templating agent for palladium nanoparticles. J Appl Polym Sci 121(3):1765–1773CrossRefGoogle Scholar
  16. 16.
    Devi GS, Subrahmanyam VB, Gadkari S, Gupta S (2006) NH3 gas sensing properties of nanocrystalline ZnO based thick films. Anal Chim Acta 568(1–2):41–46CrossRefGoogle Scholar
  17. 17.
    El-Rafie M, Ahmed HB, Zahran M (2014) Facile precursor for synthesis of silver nanoparticles using alkali treated maize starch. Int Sch Res Not. Google Scholar
  18. 18.
    Elumalai EK, Kayalvizhi K, Silvan S (2014) Coconut water assisted green synthesis of silver nanoparticles. J Pharm Bioallied Sci 6(4):241CrossRefGoogle Scholar
  19. 19.
    Emam HE, Ahmed HB (2016) Polysaccharides templates for assembly of nanosilver. Carbohydr Polym 135:300–307CrossRefGoogle Scholar
  20. 20.
    Emam HE, Ahmed HB (2018) Carboxymethyl cellulose macromolecules as generator of anisotropic nanogold for catalytic performance. Int J Biol Macromol 111:999–1009CrossRefGoogle Scholar
  21. 21.
    Emam HE, El-Bisi M (2014) Merely Ag nanoparticles using different cellulose fibers as removable reductant. Cellulose 21(6):4219–4230CrossRefGoogle Scholar
  22. 22.
    Emam HE, El-Hawary NS, Ahmed HB (2017) Green technology for durable finishing of viscose fibers via self-formation of AuNPs. Int J Biol Macromol 96:697–705CrossRefGoogle Scholar
  23. 23.
    Emam HE, El-Rafie M, Ahmed HB, Zahran M (2015) Room temperature synthesis of metallic nanosilver using acacia to impart durable biocidal effect on cotton fabrics. Fibers Polym 16(8):1676–1687CrossRefGoogle Scholar
  24. 24.
    Emam HE, El-Zawahry MM, Ahmed HB (2017) One-pot fabrication of AgNPs, AuNPs and Ag–Au nano-alloy using cellulosic solid support for catalytic reduction application. Carbohydr Polym 166:1–13CrossRefGoogle Scholar
  25. 25.
    Emam HE, Mowafi S, Mashaly HM, Rehan M (2014) Production of antibacterial colored viscose fibers using in situ prepared spherical Ag nanoparticles. Carbohydr Polym 110:148–155CrossRefGoogle Scholar
  26. 26.
    Emam HE, Saleh N, Nagy KS, Zahran M (2015) Functionalization of medical cotton by direct incorporation of silver nanoparticles. Int J Biol Macromol 78:249–256CrossRefGoogle Scholar
  27. 27.
    Emam HE, Saleh N, Nagy KS, Zahran M (2016) Instantly AgNPs deposition through facile solventless technique for poly-functional cotton fabrics. Int J Biol Macromol 84:308–318CrossRefGoogle Scholar
  28. 28.
    Emam HE, Zahran MK (2015) Ag0 nanoparticles containing cotton fabric: synthesis, characterization, color data and antibacterial action. Int J Biol Macromol 75:106–114CrossRefGoogle Scholar
  29. 29.
    Gonzalez CM, Liu Y, Scaiano J (2009) Photochemical strategies for the facile synthesis of gold–silver alloy and core–shell bimetallic nanoparticles. J Phys Chem C 113(27):11861–11867CrossRefGoogle Scholar
  30. 30.
    Hebeish A, El-Rafie M, Abdel-Mohdy F, Abdel-Halim E, Emam HE (2010) Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles. Carbohydr Polym 82(3):933–941CrossRefGoogle Scholar
  31. 31.
    Hindi S, Albureikan MO, Al-Ghamdi AA, Alhummiany H, Ansari MS (2017) Synthesis, characterization and biodegradation of gum Arabic-based bioplastic membranes. Nanosci Nanotechnol 4(2):32–42Google Scholar
  32. 32.
    Huang J, Vongehr S, Tang S, Lu H, Shen J, Meng X (2009) Ag dendrite-based Au/Ag bimetallic nanostructures with strongly enhanced catalytic activity. Langmuir 25(19):11890–11896CrossRefGoogle Scholar
  33. 33.
    Jiang G, Wang L, Chen W (2007) Studies on the preparation and characterization of gold nanoparticles protected by dendrons. Mater Lett 61(1):278–283CrossRefGoogle Scholar
  34. 34.
    Kattumuri V, Katti K, Bhaskaran S, Boote EJ, Casteel SW, Fent GM, Robertson DJ, Chandrasekhar M, Kannan R, Katti KV (2007) Gum Arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies. Small 3(2):333–341CrossRefGoogle Scholar
  35. 35.
    Lee J, Easteal A, Pal U, Bhattacharyya D (2009) Evolution of ZnO nanostructures in sol–gel synthesis. Curr Appl Phys 9(4):792–796CrossRefGoogle Scholar
  36. 36.
    Litvin VA, Minaev BF (2014) The size-controllable, one-step synthesis and characterization of gold nanoparticles protected by synthetic humic substances. Mater Chem Phys 144(1–2):168–178CrossRefGoogle Scholar
  37. 37.
    Liu X, Wang A, Wang X, Mou C-Y, Zhang T (2008) Au–Cu alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation. Chem Commun 27:3187–3189CrossRefGoogle Scholar
  38. 38.
    López-Franco YL, Gooycolea FM, Lizardi-Mendoza J (2014) Gum of Prosopis/Acacia species. In: Ramawat K, Mérillon JM (eds) Polysaccharides. Springer, Cham. Google Scholar
  39. 39.
    Mohan YM, Raju KM, Sambasivudu K, Singh S, Sreedhar B (2007) Preparation of acacia-stabilized silver nanoparticles: a green approach. J Appl Polym Sci 106(5):3375–3381CrossRefGoogle Scholar
  40. 40.
    Montenegro MA, Boiero ML, Valle L, Borsarelli CD (2012) Gum Arabic: more than an edible emulsifier. In: Verbeek C (ed) Products and applications of biopolymers. InTech.
  41. 41.
    Mott D, Thuy NT, Aoki Y, Maenosono S (2010) Aqueous synthesis and characterization of Ag and Ag–Au nanoparticles: addressing challenges in size, monodispersity and structure. Philos Trans R Soc Lond A 368(1927):4275–4292CrossRefGoogle Scholar
  42. 42.
    Nep EI, Conway BR (2010) Characterization of grewia gum, a potential pharmaceutical excipient. J Excip Food Chem 1(1):30–40Google Scholar
  43. 43.
    Nie S-P, Wang C, Cui SW, Wang Q, Xie M-Y, Phillips GO (2013) The core carbohydrate structure of Acacia seyal var. seyal (Gum Arabic). Food Hydrocolloids 32(2):221–227CrossRefGoogle Scholar
  44. 44.
    Nie S-P, Wang C, Cui SW, Wang Q, Xie M-Y, Phillips GO (2013) A further amendment to the classical core structure of gum Arabic (Acacia senegal). Food Hydrocolloids 31(1):42–48CrossRefGoogle Scholar
  45. 45.
    Oko DN, Zhang J, Garbarino S, Chaker M, Ma D, Tavares AC, Guay D (2014) Formic acid electro-oxidation at PtAu alloyed nanoparticles synthesized by pulsed laser ablation in liquids. J Power Sources 248:273–282CrossRefGoogle Scholar
  46. 46.
    Pal A, Shah S, Kulkarni V, Murthy R, Devi S (2009) Template free synthesis of silver–gold alloy nanoparticles and cellular uptake of gold nanoparticles in Chinese Hamster Ovary cell. Mater Chem Phys 113(1):276–282CrossRefGoogle Scholar
  47. 47.
    Pal U, Serrano JG, Santiago P, Xiong G, Ucer K, Williams R (2006) Synthesis and optical properties of ZnO nanostructures with different morphologies. Opt Mater 29(1):65–69CrossRefGoogle Scholar
  48. 48.
    Park C-S, Lim K-H, Kwon D-W, Yoon T-H (2008) Biocompatible quantum dot nanocolloids stabilized by gum Arabic. Bull Korean Chem Soc 29(6):1277–1279CrossRefGoogle Scholar
  49. 49.
    Petkov V, Prasai B, Ren Y, Shan S, Luo J, Joseph P, Zhong C-J (2014) Solving the nanostructure problem: exemplified on metallic alloy nanoparticles. Nanoscale 6(17):10048–10061CrossRefGoogle Scholar
  50. 50.
    Poliakoff M, Anastas P (2001) A principled stance. Nature 413(6853):257CrossRefGoogle Scholar
  51. 51.
    Poliakoff M, Fitzpatrick JM, Farren TR, Anastas PT (2002) Green chemistry: science and politics of change. Science 297(5582):807–810CrossRefGoogle Scholar
  52. 52.
    Raveendran P, Fu J, Wallen SL (2006) A simple and “green” method for the synthesis of Au, Ag, and Au–Ag alloy nanoparticles. Green Chem 8(1):34–38CrossRefGoogle Scholar
  53. 53.
    Ristig S, Kozlova D, Meyer-Zaika W, Epple M (2014) An easy synthesis of autofluorescent alloyed silver–gold nanoparticles. J Mater Chem B 2(45):7887–7895CrossRefGoogle Scholar
  54. 54.
    Sreedhar B, Devi DK, Neetha AS, Kumar VP, Chary K (2015) Green synthesis of gum-acacia assisted gold-hydroxyapatite nanostructures–characterization and catalytic activity. Mater Chem Phys 153:23–31CrossRefGoogle Scholar
  55. 55.
    Sreedhar B, Devi DK, Yada D (2011) Selective hydrogenation of nitroarenes using gum acacia supported Pt colloid an effective reusable catalyst in aqueous medium. Catal Commun 12(11):1009–1014CrossRefGoogle Scholar
  56. 56.
    Sreedhar B, Satyavani C, Keerthi Devi D, Rambabu C, Rao B, Saratchandra Babu M (2011) Bioinspired synthesis of morphologically controlled SrCO3 superstructures by natural gum acacia. Cryst Res Technol 46(5):485–492CrossRefGoogle Scholar
  57. 57.
    Sreedhar B, Vani CS, Devi DK, Rao MB, Rambabu C (2012) Shape controlled synthesis of barium carbonate microclusters and nanocrystallites using natural polysachharide–gum Acacia. Am J Mater Sci 2(1):5–13CrossRefGoogle Scholar
  58. 58.
    Toshima N, Yonezawa T (1998) Bimetallic nanoparticles—novel materials for chemical and physical applications. New J Chem 22(11):1179–1201CrossRefGoogle Scholar
  59. 59.
    Tsai C-H, Chen S-Y, Song J-M, Haruta M, Kurata H (2015) Effect of ag templates on the formation of Au–Ag hollow/core-shell nanostructures. Nanoscale Res Lett 10(1):438CrossRefGoogle Scholar
  60. 60.
    Velikov KP, Zegers GE, van Blaaderen A (2003) Synthesis and characterization of large colloidal silver particles. Langmuir 19(4):1384–1389CrossRefGoogle Scholar
  61. 61.
    Vijayaraghavan K, Ashokkumar T (2017) Plant-mediated biosynthesis of metallic nanoparticles: a review of literature, factors affecting synthesis, characterization techniques and applications. J Environ Chem Eng 5:4866–4883CrossRefGoogle Scholar
  62. 62.
    Vishnukumar P, Vivekanandhan S, Misra M, Mohanty A (2018) Recent advances and emerging opportunities in phytochemical synthesis of ZnO nanostructures. Mater Sci Semicond Process 80:143–161CrossRefGoogle Scholar
  63. 63.
    Vishnukumar P, Vivekanandhan S, Muthuramkumar S (2017) Plant-mediated biogenic synthesis of palladium nanoparticles: recent trends and emerging opportunities. ChemBioEng Rev 4(1):18–36CrossRefGoogle Scholar
  64. 64.
    Wang C, Yin H, Chan R, Peng S, Dai S, Sun S (2009) One-pot synthesis of oleylamine coated AuAg alloy NPs and their catalysis for CO oxidation. Chem Mater 21(3):433–435CrossRefGoogle Scholar
  65. 65.
    Williams DN, Gold KA, Holoman TRP, Ehrman SH, Wilson OC (2006) Surface modification of magnetic nanoparticles using gum Arabic. J Nanopart Res 8(5):749–753CrossRefGoogle Scholar
  66. 66.
    Xue D, Sethi R (2012) Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro-and nanoparticles. J Nanopart Res 14(11):1239CrossRefGoogle Scholar
  67. 67.
    Yang L, Shang L, Nienhaus GU (2013) Mechanistic aspects of fluorescent gold nanocluster internalization by live HeLa cells. Nanoscale 5(4):1537–1543CrossRefGoogle Scholar
  68. 68.
    Zhang P, Li J, Liu D, Qin Y, Guo Z-X, Zhu D (2004) Self-assembly of gold nanoparticles on fullerene nanospheres. Langmuir 20(4):1466–1472CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Textile Industries Research Division, Pretreatment and Finishing of Cellulosic based Textiles DepartmentNational Research CentreGizaEgypt

Personalised recommendations