Advertisement

Journal of Polymers and the Environment

, Volume 27, Issue 1, pp 148–157 | Cite as

Producing Conductive Graphene–Nanocellulose Paper in One-pot

  • Ruibin Wang
  • Qianli Ma
  • Huilong Zhang
  • Zhengqiang Ma
  • Rendang Yang
  • J. Y. ZhuEmail author
Original Paper
  • 57 Downloads

Abstract

This paper reports a facile one-pot method to produce graphene oxide nanocellulose composite (GNCC) that was subsequently reduced using l-ascorbic acid to form a conductive paper (CP). Cellulose fibers were directly added into the reaction system during graphite exfoliation using sulfuric acid to produce cellulose nano- or microfibrils through acid hydrolysis along with mechancial mixing. FTIR and Raman analyses indicated that reduction using l-ascorbic acid efficiently produced a well-deoxygenated CP with high conductivity of 116.3 ± 1.5 S m−1 at 20% graphene oxide loading. Furthermore, the presence of cellulose nano- or microfibrils improved CP thermal stability with onset degradation Tonset of 319 °C as well as mechanical properties with a specific tensile of 19 N mg−1. This one-pot method substantially simplified the GNCC production process and has practical significance.

Keywords

One-pot Graphene oxide Cellulose Conductive paper Thermal stablility 

Notes

Acknowledgements

We acknowledge the financial support from US Forest Service, USDA Agriculture and Food Research Initiative (AFRI) Competitive (Grant No. 2011-67009-20056), and the Chinese Scholarship Council (CSC) that made the visiting appointments of Wang and Ma at the Forest Products Laboratory possible.

Supplementary material

10924_2018_1330_MOESM1_ESM.docx (2.9 mb)
Supplementary material 1 (DOCX 2974 KB)

References

  1. 1.
    Jung YH, Lee J, Qiu Y, Cho N, Cho SJ, Zhang H, Lee S, Kim TJ, Gong S, Ma Z (2016) Stretchable twisted-pair transmission lines for microwave frequency wearable electronics. Adv Funct Mater 26(26):4635–4642CrossRefGoogle Scholar
  2. 2.
    Li L, Wu Z, Yuan S, Zhang X-B (2014) Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ Sci 7(7):2101–2122CrossRefGoogle Scholar
  3. 3.
    Wang R, Chen L, Zhu J, Yang R (2017) Tailored and integrated production of carboxylated cellulose nanocrystals (CNC) with nanofibrils (CNF) through maleic acid hydrolysis. ChemNanoMat 3(5):328–335CrossRefGoogle Scholar
  4. 4.
    Weng Z, Su Y, Wang DW, Li F, Du J, Cheng HM (2011) Graphene–cellulose paper flexible supercapacitors. Adv Energy Mater 1(5):917–922CrossRefGoogle Scholar
  5. 5.
    Gao K, Shao Z, Li J, Wang X, Peng X, Wang W, Wang F (2013) Cellulose nanofiber–graphene all solid-state flexible supercapacitors. J Mater Chem A 1(1):63–67CrossRefGoogle Scholar
  6. 6.
    Ye Y-S, Zeng H-X, Wu J, Dong L-Y, Zhu J-T, Xue Z-G, Zhou X-P, Xie X-L, Mai Y-W (2016) Biocompatible reduced graphene oxide sheets with superior water dispersibility stabilized by cellulose nanocrystals and their polyethylene oxide composites. Green Chem 18(6):1674–1683CrossRefGoogle Scholar
  7. 7.
    Du X, Zhang Z, Liu W, Deng Y (2017) Nanocellulose-based conductive materials and their emerging applications in energy devices—review. Nano Energy 35:299–320CrossRefGoogle Scholar
  8. 8.
    Ouyang W, Sun J, Memon J, Wang C, Geng J, Huang Y (2013) Scalable preparation of three-dimensional porous structures of reduced graphene oxide/cellulose composites and their application in supercapacitors. Carbon 62:501–509CrossRefGoogle Scholar
  9. 9.
    Li Y, Zhu H, Shen F, Wan J, Han X, Dai J, Dai H, Hu L (2014) Highly conductive microfiber of graphene oxide templated carbonization of nanofibrillated cellulose. Adv Funct Mater 24(46):7366–7372CrossRefGoogle Scholar
  10. 10.
    Xiong R, Hu K, Grant AM, Ma R, Xu W, Lu C, Zhang X, Tsukruk VV (2016) Ultrarobust transparent cellulose nanocrystal–graphene membranes with high electrical conductivity. Adv Mater 28(7):1501–1509CrossRefGoogle Scholar
  11. 11.
    Wang QQ, Zhu JY, Gleisner R, Kuster TA, Baxa U, McNeil SE (2012) Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose 19(5):1631–1643CrossRefGoogle Scholar
  12. 12.
    Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6):1687–1691CrossRefGoogle Scholar
  13. 13.
    Chen L, Zhu J, Baez C, Kitin P, Elder T (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18(13):3835–3843CrossRefGoogle Scholar
  14. 14.
    Qin Y, Qiu X, Zhu JY (2016) Understanding longitudinal wood fiber ultra-structure for producing cellulose nanofibrils using disk milling with dilute acid prehydrolysis. Sci Rep 6:35602CrossRefGoogle Scholar
  15. 15.
    Zhu H, Luo W, Ciesielski PN, Fang Z, Zhu JY, Henriksson G, Himmel ME, Hu L (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116(16):9305–9374CrossRefGoogle Scholar
  16. 16.
    Nickerson RF, Habrle JA (1947) Cellulose intercrystalline structure. Ind Eng Chem 39:1507–1512CrossRefGoogle Scholar
  17. 17.
    Rånby BG (1951) The colloidal properties of cellulose micelles. Discuss Faraday Soc 11:158–164CrossRefGoogle Scholar
  18. 18.
    Mukherjee SM, Woods HJ (1953) X-ray and electron microscope studies of the degradation of cellulose by sulphuric acid. Biochim Biophys Acta 10:499–511CrossRefGoogle Scholar
  19. 19.
    Hamad WY, Hu TQ (2010) Structure–process–yield interrelations in nanocrystalline cellulose extraction. Can J Chem Eng 88:392–402Google Scholar
  20. 20.
    Chen L, Wang Q, Hirth K, Baez C, Agarwal UP, Zhu JY (2015) Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 22:1753–1762CrossRefGoogle Scholar
  21. 21.
    Wang Q, Zhu J, Reiner R, Verrill S, Baxa U, McNeil S (2012) Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC. Cellulose 19(6):2033–2047CrossRefGoogle Scholar
  22. 22.
    Wang Q, Zhu J, Considine JM (2013) Strong and optically transparent films prepared using cellulosic solid residue recovered from cellulose nanocrystals production waste stream. ACS Appl Mater Interfaces 5(7):2527–2534CrossRefGoogle Scholar
  23. 23.
    Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. JACS 80(6):1339–1339CrossRefGoogle Scholar
  24. 24.
    Wang W, Sabo RC, Mozuch MD, Kersten P, Zhu JY, Jin Y (2015) Physical and mechanical properties of cellulose nanofibril films from bleached eucalyptus pulp by endoglucanase treatment and microfluidization. J Polym Environ 23:551–558CrossRefGoogle Scholar
  25. 25.
    Kulkarni A, Schulz KH, Lim T, Khan M (1999) Dependence of the sheet resistance of indium-tin-oxide thin films on grain size and grain orientation determined from X-ray diffraction techniques. Thin Solid Films 345(2):273–277CrossRefGoogle Scholar
  26. 26.
    Acik M, Lee G, Mattevi C, Chhowalla M, Cho K, Chabal Y (2010) Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nat Mater 9(10):840–845CrossRefGoogle Scholar
  27. 27.
    Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240CrossRefGoogle Scholar
  28. 28.
    Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5(5):1671–1677CrossRefGoogle Scholar
  29. 29.
    Reich S, Thomsen C (2004) Raman spectroscopy of graphite. Philos Trans R Soc A 362(1824):2271–2288CrossRefGoogle Scholar
  30. 30.
    Kudin KN, Ozbas B, Schniepp HC, Prud’Homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8(1):36–41CrossRefGoogle Scholar
  31. 31.
    Wang Q, Zhao X, Zhu JY (2014) Kinetics of strong acid hydrolysis of a bleached kraft pulp for producing cellulose nanocrystals (CNCs). Ind Eng Chem Res 53(27):11007–11014CrossRefGoogle Scholar
  32. 32.
    Feng H, Cheng R, Zhao X, Duan X, Li J (2013) A low-temperature method to produce highly reduced graphene oxide. Nat Commun 4:1539CrossRefGoogle Scholar
  33. 33.
    Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101–105CrossRefGoogle Scholar
  34. 34.
    Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3(5):270–274CrossRefGoogle Scholar
  35. 35.
    Geim AK, Grigorieva IV (2013) Van der Waals heterostructures. Nature 499(7459):419–425CrossRefGoogle Scholar
  36. 36.
    Zhang LL, Zhao X, Stoller MD, Zhu Y, Ji H, Murali S, Wu Y, Perales S, Clevenger B, Ruoff RS (2012) Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett 12(4):1806–1812CrossRefGoogle Scholar
  37. 37.
    Fernández-Merino MJ, Guardia L, Paredes J, Villar-Rodil S, Solís-Fernández P, Martínez-Alonso A, Tascon J (2010) Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J Phys Chem C 114(14):6426–6432CrossRefGoogle Scholar
  38. 38.
    Dang LN, Seppälä J (2015) Electrically conductive nanocellulose/graphene composites exhibiting improved mechanical properties in high-moisture condition. Cellulose 22(3):1799–1812CrossRefGoogle Scholar
  39. 39.
    Jiang H, Yang W, Chai S, Pu S, Chen F, Fu Q (2016) Property enhancement of graphene fiber by adding small loading of cellulose nanofiber. Nanocomposites 2(1):8–17CrossRefGoogle Scholar
  40. 40.
    Acik M, Mattevi C, Gong C, Lee G, Cho K, Chhowalla M, Chabal YJ (2010) The role of intercalated water in multilayered graphene oxide. ACS Nano 4(10):5861–5868CrossRefGoogle Scholar
  41. 41.
    Zhang X, Liu X, Zheng W, Zhu J (2012) Regenerated cellulose/graphene nanocomposite films prepared in DMAC/LiCl solution. Carbohydr Polym 88(1):26–30CrossRefGoogle Scholar
  42. 42.
    Alqus R, Eichhorn SJ, Bryce RA (2015) Molecular dynamics of cellulose amphiphilicity at the graphene–water interface. Biomacromolecules 16(6):1771–1783CrossRefGoogle Scholar
  43. 43.
    Liu R, Liang S, Tang X-Z, Yan D, Li X, Yu Z-Z (2012) Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. J Mater Chem 22(28):14160–14167CrossRefGoogle Scholar
  44. 44.
    Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GH, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448(7152):457–460CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.Forest Products Laboratory, U. S. Forest ServiceU. S. Department of AgricultureMadisonUSA
  3. 3.Department of Electrical and Computer EgineeringUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations