Advertisement

Journal of Polymers and the Environment

, Volume 27, Issue 1, pp 176–188 | Cite as

Preparation of Polymer Microparticles Through Non-aqueous Suspension Polycondensations: Part III—Degradation of PBS Microparticles in Different Aqueous Environments

  • Luciana da Silva DutraEmail author
  • Thiago de Souza Belan Costa
  • Victor Tozatto Verissimo Lobo
  • Thamiris Franckini Paiva
  • Marcio de Souza Nele
  • Jose Carlos Pinto
Original Paper
  • 29 Downloads

Abstract

The present work investigated the degradation of poly(butylene succinate) (PBS) in different aqueous media, as PBS microparticles are intended for use in personal care and cosmetic applications. Degradation tests were performed for the first time at different conditions of salinity, pH and temperature for two types of PBS: microparticles produced through suspension polycondensations and commercial pellets produced through bulk polycondensations. As shown experimentally, rates of PBS degradation were sensitive to modification of degradation conditions, being faster at higher temperatures, at acidic conditions and at alkaline conditions. However, PBS degradation was not very sensitive to the presence of salts, although degradation rates were shown to be higher in real sea water samples. Additionally, rates of PBS degradation were shown to depend significantly on PBS properties and morphology. Based on the obtained experimental data, a model was proposed to evaluate the effects of degradation temperature and particle morphology on the rates of PBS degradation in sea water, providing suitable fits for the available data.

Graphical Abstract

Keywords

Poly(butylene succinate) Degradation Hydrolysis 

References

  1. 1.
    Bergmann M, Gutow L, Klages M (2015) Marine anthropogenic litter. Springer International Publishing, ChamCrossRefGoogle Scholar
  2. 2.
    Setälä O, Norkko J, Lehtiniemi M (2016) Feeding type affects microplastic ingestion in a coastal invertebrate community. Mar Pollut Bull 102:95–101.  https://doi.org/10.1016/j.marpolbul.2015.11.053 CrossRefGoogle Scholar
  3. 3.
    Kuruppalil Z (2011) Green plastics: an emerging alternative for petroleum-based plastics? Int J Eng Res Innov 3:59–64Google Scholar
  4. 4.
    Kanemura C, Nakashima S, Hotta A (2012) Mechanical properties and chemical structures of biodegradable poly(butylene-succinate) for material reprocessing. Polym Degrad Stab 97:972–980.  https://doi.org/10.1016/j.polymdegradstab.2012.03.015 CrossRefGoogle Scholar
  5. 5.
    Ren M, Song J, Song C et al (2005) Crystallization kinetics and morphology of poly(butylene succinate-co-adipate). J Polym Sci B 43:3231–3241.  https://doi.org/10.1002/polb.20539 CrossRefGoogle Scholar
  6. 6.
    Zhang Y, Lu B, Lv F et al (2012) Effect of processing conditions on poly(butylene succinate) foam materials. J Polym Sci B 126:756–761.  https://doi.org/10.1002/app Google Scholar
  7. 7.
    Aeschelmann F, Carus M (2015) Biobased Building blocks and polymers in the world: capacities, production, and applications-status quo and trends towards 2020. Ind Biotechnol 11:154–159.  https://doi.org/10.1089/ind.2015.28999.fae CrossRefGoogle Scholar
  8. 8.
    Zhao JH, Wang XQ, Zeng J et al (2005) Biodegradation of poly(butylene succinate) in compost. J Appl Polym Sci 97:2273–2278.  https://doi.org/10.1002/app.22009 CrossRefGoogle Scholar
  9. 9.
    MORGAN PW (1962) Low-temperature polycondensation processes. American Chemical Society, Washington, DC, pp 191–199CrossRefGoogle Scholar
  10. 10.
    Vroman I, Tighzert L (2009) Biodegradable polymers. Materials (Basel) 2:307–344.  https://doi.org/10.3390/ma2020307 CrossRefGoogle Scholar
  11. 11.
    Dutra L, Nele S, Pinto M JC (2018) A novel approach for the preparation of poly(butylene succinate) microparticles. Macromol Symp 381(1):1800118CrossRefGoogle Scholar
  12. 12.
    Dutra L, Nele S, Pinto M JC (2018) Preparation of polymer microparticles through non-aqueous suspension polycondensations. Part IIeffects of operating variables on properties of poly(butylene succinate). Macromol React Eng.  https://doi.org/10.1002/mren.201800039 Google Scholar
  13. 13.
    Achmad F, Yamane K, Quan S, Kokugan T (2009) Synthesis of polylactic acid by direct polycondensation under vacuum without catalysts, solvents and initiators. Chem Eng J 151:342–350.  https://doi.org/10.1016/j.cej.2009.04.014 CrossRefGoogle Scholar
  14. 14.
    Amass W, Amass A, Tighe B (1998) A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym Int 47:89–144.  https://doi.org/10.1002/(SICI)1097-0126(1998100)47:2%3C89::AID-PI86%3E3.0.CO;2-F CrossRefGoogle Scholar
  15. 15.
    Goujard L, Roumanet P-J, Barea B et al (2016) Evaluation of the effect of chemical or enzymatic synthesis methods on biodegradability of polyesters. J Polym Environ 24:64–71.  https://doi.org/10.1007/s10924-015-0742-7 CrossRefGoogle Scholar
  16. 16.
    Lindström A, Albertsson AC, Hakkarainen M (2004) Quantitative determination of degradation products an effective means to study early stages of degradation in linear and branched poly(butylene adipate) and poly(butylene succinate). Polym Degrad Stab 83:487–493.  https://doi.org/10.1016/j.polymdegradstab.2003.07.001 CrossRefGoogle Scholar
  17. 17.
    Pohanish RP (2015) Sittig’s handbook of pesticides and agricultural chemicals. Elsevier, Amsterdam, pp 738–768CrossRefGoogle Scholar
  18. 18.
    Ahn BD, Kim SH, Kim YH, Yang JS (2001) Synthesis and characterization of the biodegradable copolymers from succinic acid and adipic acid with 1,4-butanediol. J Appl Polym Sci 82:2808–2826CrossRefGoogle Scholar
  19. 19.
    Kint DPR, Alla A, Deloret E et al (2003) Synthesis, characterization, and properties of poly(ethylene terephthalate)/poly(1,4-butylene succinate) block copolymers. Polymer 44:1321–1330.  https://doi.org/10.1080/00380768.2001.10408366 CrossRefGoogle Scholar
  20. 20.
    Zhu QY, He YS, Zeng JB et al (2011) Synthesis and characterization of a novel multiblock copolyester containing poly(ethylene succinate) and poly(butylene succinate). Mater Chem Phys 130:943–949.  https://doi.org/10.1016/j.matchemphys.2011.08.012 CrossRefGoogle Scholar
  21. 21.
    Terzopoulou ZN, Papageorgiou GZ, Papadopoulou E et al (2016) Development and study of fully biodegradable composite materials based on poly(butylene succinate) and hemp fibers or hemp shives. Polym Compos 37:407–421.  https://doi.org/10.1002/pc.23194 CrossRefGoogle Scholar
  22. 22.
    Kim HS, Kim HJ, Lee JW, Choi IG (2006) Biodegradability of bio-flour filled biodegradable poly(butylene succinate) bio-composites in natural and compost soil. Polym Degrad Stab 91:1117–1127.  https://doi.org/10.1016/j.polymdegradstab.2005.07.002 CrossRefGoogle Scholar
  23. 23.
    Phua YJ, Lau NS, Sudesh K et al (2012) Biodegradability studies of poly(butylene succinate)/organo-montmorillonite nanocomposites under controlled compost soil conditions: effects of clay loading and compatibiliser. Polym Degrad Stab 97:1345–1354.  https://doi.org/10.1016/j.polymdegradstab.2012.05.024 CrossRefGoogle Scholar
  24. 24.
    Hoshino A, Sawada H, Yokota M et al (2001) Influence of weather conditions and soil properties on degradation of biodegradable plastics in soil. Soil Sci Plant Nutr 47:35–43.  https://doi.org/10.1080/00380768.2001.10408366 CrossRefGoogle Scholar
  25. 25.
    Kasuya K, Takagi K, Ishiwatari S et al (1998) Biodegradabilities of various aliphatic polyesters in natural waters. Polym Degrad Stab 59:327–332.  https://doi.org/10.1016/S0141-3910(97)00155-9 CrossRefGoogle Scholar
  26. 26.
    Schwaab M, Pinto JC (2007) Optimum reference temperature for reparameterization of the Arrhenius equation. Part 1: problems involving one kinetic constant. Chem Eng Sci 62:2750–2764.  https://doi.org/10.1016/j.ces.2007.02.020 CrossRefGoogle Scholar
  27. 27.
    Chen S, Billings SA, Luo W (1989) Orthogonal least squares methods and their application to non-linear system identification. Int J Control 50:1873–1896.  https://doi.org/10.1080/00207178908953472 CrossRefGoogle Scholar
  28. 28.
    Wolfram Research, Inc. (2018) Wolfram Programming Lab, ver 10. Wolfram Research, Inc., Champaign, IL. http://www.wolfram.com/
  29. 29.
    Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313.  https://doi.org/10.1093/comjnl/7.4.308 CrossRefGoogle Scholar
  30. 30.
    Xu J, Guo BH (2010) Poly(butylene succinate) and its copolymers: research, development and industrialization. Biotechnol J 5:1149–1163.  https://doi.org/10.1002/biot.201000136 CrossRefGoogle Scholar
  31. 31.
    Kim HS, Yang HS, Kim HJ (2005) Biodegradability and mechanical properties of agro-flour-filled polybutylene succinate biocomposites. J Appl Polym Sci 97:1513–1521.  https://doi.org/10.1002/app.21905 CrossRefGoogle Scholar
  32. 32.
    Antheunis H, Van Meer JC, Der, De Geus M et al (2009) Improved mathematical model for the hydrolytic degradation of aliphatic polyesters. Macromolecules 42:2462–2471.  https://doi.org/10.1021/ma802222m CrossRefGoogle Scholar
  33. 33.
    Siepmann J, Elkharraz K, Siepmann F, Klose D (2005) How autocatalysis accelerates drug release from PLGA-based microparticles: a quantitative treatment. Biomacromol 6:2312–2319.  https://doi.org/10.1021/bm050228k CrossRefGoogle Scholar
  34. 34.
    Solomons TWG, Fryhle CB (2007) Organic chemistry, 9th edn. Wiley India Pvt, LimitedGoogle Scholar
  35. 35.
    Lucas N, Bienaime C, Belloy C et al (2008) Polymer biodegradation: mechanisms and estimation techniquesa review. Chemosphere 73:429–442.  https://doi.org/10.1016/j.chemosphere.2008.06.064 CrossRefGoogle Scholar
  36. 36.
    Fukushima K, Tabuani D, Dottori M et al (2011) Effect of temperature and nanoparticle type on hydrolytic degradation of poly(lactic acid) nanocomposites. Polym Degrad Stab 96:2120–2129.  https://doi.org/10.1016/j.polymdegradstab.2011.09.018 CrossRefGoogle Scholar
  37. 37.
    Sailema-Palate GP, Vidaurre A, Campillo AF, Castilla-Cortázar I (2016) A comparative study on poly(ϵ-caprolactone) film degradation at extreme pH values. Polym Degrad Stab 130:118–125.  https://doi.org/10.1016/j.polymdegradstab.2016.06.005 CrossRefGoogle Scholar
  38. 38.
    Hakkarainen M, Albertsson AC, Karlsson S (1996) Weight losses and molecular weight changes correlated with the evolution of hydroxyacids in simulated in vivo degradation of homo- and copolymers of PLA and PGA. Polym Degrad Stab 52:283–291.  https://doi.org/10.1016/0141-3910(96)00009-2 CrossRefGoogle Scholar
  39. 39.
    Mouzakis DE, Zoga H, Galiotis C (2008) Accelerated environmental ageing study of polyester/glass fiber reinforced composites (GFRPCs). Composites 39:467–475.  https://doi.org/10.1016/j.compositesb.2006.10.004 CrossRefGoogle Scholar
  40. 40.
    Cho K, Lee J, Kwon K (2001) Hydrolytic degradation behavior of poly(butylene succinate)s with different crystalline morphologies. J Appl Polym Sci 79:1025–1033.  https://doi.org/10.1002/1097-4628(20010207)79:6%3C1025::AID-APP50%3E3.0.CO;2-7 CrossRefGoogle Scholar
  41. 41.
    Huang T, Du X, Duan J et al (2017) Poly(ethylene oxide) induced microstructure and hydrolytic degradation behavior changes of poly(butylene succinate). Polym Test 61:8–16.  https://doi.org/10.1016/j.polymertesting.2017.05.001 CrossRefGoogle Scholar
  42. 42.
    Schwaab M, Pinto JC (2007) Análise de Dados Experimentais I – Fundamentos de Estatística e Estimação de Parâmetros, 1st edn. e-papers, Rio de JaneiroGoogle Scholar
  43. 43.
    Wang Y, Pan J, Han X et al (2008) A phenomenological model for the degradation of biodegradable polymers. Biomaterials 29:3393–3401.  https://doi.org/10.1016/j.biomaterials.2008.04.042 CrossRefGoogle Scholar
  44. 44.
    Heljak MK, Swieszkowski W, Kurzydlowski KJ (2014) Modeling of the degradation kinetics of biodegradable scaffolds: the effects of the environmental conditions. J Appl Polym Sci 131:1–7.  https://doi.org/10.1002/app.40280 CrossRefGoogle Scholar
  45. 45.
    Kobayashi S, Naito K (2011) Biodegradation of poly(lactic acid)/ poly(butylene succinate) polymer blends. J Environ Eng 6:861–868.  https://doi.org/10.1299/jee.6.861 CrossRefGoogle Scholar
  46. 46.
    Partini M, Pantani R (2007) FTIR analysis of hydrolysis in aliphatic polyesters. Polym Degrad Stab 92:1491–1497.  https://doi.org/10.1016/j.polymdegradstab.2007.05.009 CrossRefGoogle Scholar
  47. 47.
    Grizzi I, Garreau H, Li S, Vert M (1995) Hydrolytic degradation of devices based on poly(DL-lactic acid) size dependence. Biomaterials 16:305–311.  https://doi.org/10.1016/0142-9612(95)93258-F CrossRefGoogle Scholar
  48. 48.
    Chang M (2015) Reducing microplastics from facial exfoliating cleansers in wastewater through treatment versus consumer product decisions. Mar Pollut Bull 101:330–333.  https://doi.org/10.1016/j.marpolbul.2015.10.074 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Luciana da Silva Dutra
    • 1
    Email author
  • Thiago de Souza Belan Costa
    • 1
  • Victor Tozatto Verissimo Lobo
    • 1
  • Thamiris Franckini Paiva
    • 2
  • Marcio de Souza Nele
    • 1
  • Jose Carlos Pinto
    • 2
  1. 1.Escola de QuímicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Programa de Engenharia Química/COPPE Universidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations