Journal of Polymers and the Environment

, Volume 27, Issue 1, pp 165–175 | Cite as

Structure and Properties of Polymer–Polymer Composites Based on Biopolymers and Ultra-High Molecular Weight Polyethylene Obtained via Ethylene In Situ Polymerization

  • E. M. Khar’kova
  • D. I. MendeleevEmail author
  • M. A. Guseva
  • V. A. Gerasin
Original Paper


Polymer–polymer composites (PPC) of biopolymers (starch, cellulose, poly-3-hydroxybutyrate) and ultra-high molecular weight polyethylene (UHMWPE) were obtained by ethylene in situ polymerization (polymerization filling). Ethylene polymerization was carried out in “mild” conditions (25 °C, 0.1 MPa) on a traditional Ziegler–Natta catalyst [TiCl4 + (C2H5)2AlCl], biopolymer-supported. Catalyst activity increases in the presence of polysaccharides depending on their type and quantity. UHMWPE matrix possesses a molecular weight of 1.20–1.65 MDa, melting point of 138–143 °C, high melting enthalpy and a crystallinity of 60–70%. PPCs generally exhibit better tensile properties than neat polyethylene, such as elastic modulus and elongation at break. Thermogravimetric analysis shows a significant decrease in decomposition temperature and the rate of mass loss on both stages of PPC destruction. The photo-oxidative destruction of PPC after UV-irradiation for different periods of time was studied by FTIR and XRD. Carbonyl indices indicate the rate of oxidation to be 3–4 times greater than in neat PE. Prolonged irradiation leads to a considerable increase in crystallinity and crystallite size. Irradiated PPC films show a 90% extent of biofouling by mold fungi, compared to no growth apparent for neat samples.


UHMWPE Polymer–polymer composites Polysaccharides Photooxidation Biofouling 



This work was carried out within the State Program of TIPS RAS.


  1. 1.
    Albertsson AC, Karlsson S (1994) In: Griffin G (ed) Chemistry and technology of biodegradable polymers. Blackie, GlasgowGoogle Scholar
  2. 2.
    Vasnev VA (1997) Polym Sci Ser B 39:474Google Scholar
  3. 3.
    Suvorova AI, Tyukova IS, Trufanova EI (2000) Russ Chem Rev 2000 69:451CrossRefGoogle Scholar
  4. 4.
    Kaseem M, Hamad K, Deri F (2012) Polym Sci Ser A 54:165CrossRefGoogle Scholar
  5. 5.
    Rogovina SZ, Grachev AV, Aleksanyan KV, Prut EV (2011) Russ J Bioorg Chem 37:791CrossRefGoogle Scholar
  6. 6.
    Rogovina SZ, Lomakin SM, Aleksanyan KV, Prut EV (2012) Russ J Phys Chem B 6:416CrossRefGoogle Scholar
  7. 7.
    Rogovina SZ, Aleksanyan KV, Novikov DD, Prut EV, Rebrov AV (2009) Polym Sci Ser A 51:554CrossRefGoogle Scholar
  8. 8.
    Novokshonova LA, Brevnov PN, Grinev VG, Chvalun SN, Lomakin SM, Shchegolikhin AN, Kuznetsov SP (2008) Nanotech Russ 3:330CrossRefGoogle Scholar
  9. 9.
    Pomogailo AD (1988) Polymer immobilized metallocomplex catalysts. Gordon and Breach Science Publishers, New YorkGoogle Scholar
  10. 10.
    Khar’kova EM, Mendeleev DI, Korolev YM, Shklyaruk BF, Gerasin VA, Antipov EM (2013) Polym Sci Ser A 55:493CrossRefGoogle Scholar
  11. 11.
    Khar’kova EM, Mendeleev DI, Aulov VA, Shklyaruk BF, Gerasin VA, Piryazev AA, Antipov AE (2014) Polym Sci Ser A 56:72CrossRefGoogle Scholar
  12. 12.
    Novokshonova LA, Meshkova IN (1994) Polym Sci 36:517Google Scholar
  13. 13.
    Pomogailo AD (2002) Russ Chem Rev 71:1CrossRefGoogle Scholar
  14. 14.
    Pomogailo AD (1991) IKRF 11:116 (In Russian)Google Scholar
  15. 15.
    Khar’kova EM, Mendeleev DI, Guseva MA, Shklyaruk BF (2017) Polym Sci Ser B 59:601CrossRefGoogle Scholar
  16. 16.
    Tidjani A, Arnaud R, Dasilva A (1993) J App Polym Sci 47:211CrossRefGoogle Scholar
  17. 17.
    Hadad D, Geresh S, Sivan A (2005) J Appl Microbiol 98:109CrossRefGoogle Scholar
  18. 18.
    Corti A, Muniyasamy S, Vitali M, Imam SH, Chiellini E (2010) Polym Degrad Stab 95:1106CrossRefGoogle Scholar
  19. 19.
    Galuzina TV, Gerasin VA, Doronina NV, Ezhov VA, Trotsenko YA, Kiprianov SV, Ivanov AO, Filatova MP, Shklyaruk BF (2015) Polym Sci Ser A 57:729CrossRefGoogle Scholar
  20. 20.
    Aleshina LA, Gurtov VA, Meleh NV (2014) Structure and physico-chemical properties of the cellulose and nanocomposites based on them. PSU Publishing, Petrozavodsk (in Russian)Google Scholar
  21. 21.
    Ammala A, Bateman S, Dean K, Petinakis E (2011) Prog Polym Sci 36:1015CrossRefGoogle Scholar
  22. 22.
    Ranby BG, Rabek JF (1975) Photodegradation, photo-oxidation, and photostabilization of polymers. Wiley, New YorkGoogle Scholar
  23. 23.
    Kachan AA, Zamotaev PV (1990) Photochemical modification of polyolefins. Naukova Dumka, KievGoogle Scholar
  24. 24.
    Albertsson AC, Andersson SO, Karlsson (1987) Polym Degrad Stab 18:73CrossRefGoogle Scholar
  25. 25.
    Zykova AK, Pantyukhov PV, Kolesnikova NN, Monakhova TV, Popov AA (2018) J Polym Environ 26:1343CrossRefGoogle Scholar
  26. 26.
    Pantyukhov P, Kolesnikova N, Popov A (2016) Polym Compos 2016 37:1461CrossRefGoogle Scholar
  27. 27.
    Ołdak D, Kaczmarek H, Buffeteau T, Sourisseau C (2005) J Mater Sci 40:4189CrossRefGoogle Scholar
  28. 28.
    Barron D, Birkinshaw C (2008) Polym 49:3111CrossRefGoogle Scholar
  29. 29.
    Edidin AA, Jewett CW, Kalinowski A, Kwarteng K, Kurtz SM (2000) Biomaterials 21:1451CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • E. M. Khar’kova
    • 1
  • D. I. Mendeleev
    • 1
    Email author
  • M. A. Guseva
    • 1
  • V. A. Gerasin
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences (TIPS RAS)MoscowRussia

Personalised recommendations