Advertisement

Journal of Polymers and the Environment

, Volume 27, Issue 1, pp 84–96 | Cite as

In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene–Acrylic Oligomer

  • L. Quiles-Carrillo
  • N. Montanes
  • J. M. Lagaron
  • R. Balart
  • S. Torres-GinerEmail author
Original Paper

Abstract

The present study reports on the use of low-functionality epoxy-based styrene–acrylic oligomer (ESAO) to compatibilize immiscible ternary blends made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), polylactide (PLA), and poly(butylene adipate-co-terephthalate) (PBAT). The addition during melt processing of low-functionality ESAO at two parts per hundred resin (phr) of biopolymer successfully changed the soften inclusion phase in the blend system to a thinner morphology, yielding biopolymer ternary blends with higher mechanical ductility and also improved oxygen barrier performance. The compatibilization achieved was ascribed to the in situ formation of a newly block terpolymer, i.e. PHBV-b-PLA-b-PBAT, which was produced at the blend interface by the reaction of the multiple epoxy groups present in ESAO with the functional terminal groups of the biopolymers. This chemical reaction was mainly linear due to the inherently low functionality of ESAO and the more favorable reactivity of the epoxy groups with the carboxyl groups of the biopolymers, which avoided the formation of highly branched and/or cross-linked structures and thus facilitated the films processability. Therefore, the reactive blending of biopolymers at different mixing ratios with low-functionality ESAO represents a straightforward methodology to prepare sustainable plastics at industrial scale with different physical properties that can be of interest in, for instance, food packaging applications.

Keywords

PHBV PLA PBAT Reactive extrusion Biopolymer blends 

Notes

Acknowledgements

This research was funded by the EU H2020 project YPACK (Reference number 773872) and by the Spanish Ministry of Science, Innovation, and Universities (MICIU) with project numbers MAT2017-84909-C2-2-R and AGL2015-63855-C2-1-R. L. Quiles-Carrillo wants to thank the Spanish Ministry of Education, Culture, and Sports (MECD) for financial support through his FPU Grant Number FPU15/03812. Torres-Giner also acknowledges the MICIU for his Juan de la Cierva contract (IJCI-2016-29675).

References

  1. 1.
    Babu RP, O’Connor K, Seeram R (2013) Prog Biomater 2:8CrossRefGoogle Scholar
  2. 2.
    Torres-Giner S, Torres A, Ferrándiz M, Fombuena V, Balart R (2017) J Food Saf 37:e12348CrossRefGoogle Scholar
  3. 3.
    Quiles-Carrillo L, Montanes N, Boronat T, Balart R, Torres-Giner S (2017) Polym Test 61:421CrossRefGoogle Scholar
  4. 4.
    Zakharova E, Alla A, Martínez A, De Ilarduya S, Muñoz-Guerra (2015) RSC Adv 5:46395CrossRefGoogle Scholar
  5. 5.
    Steinbüchel A, Valentin HE (1995) FEMS Microbiol Lett 128:219CrossRefGoogle Scholar
  6. 6.
    McChalicher CWJ, Srienc F (2007) J Biotechnol 132:296CrossRefGoogle Scholar
  7. 7.
    Reis KC, Pereira J, Smith AC, Carvalho CWP, Wellner N, Yakimets I (2008) J Food Eng 89:361CrossRefGoogle Scholar
  8. 8.
    Vink ETH, Davies S (2015) Ind Biotechnol 11:167CrossRefGoogle Scholar
  9. 9.
    John RP, Nampoothiri KM, Pandey A (2006) Process Biochem 41:759CrossRefGoogle Scholar
  10. 10.
    Madhavan Nampoothiri K, Nair NR, John RP (2010) Biores Technol 101:8493CrossRefGoogle Scholar
  11. 11.
    Garlotta D (2001) J Polym Environ 9:63CrossRefGoogle Scholar
  12. 12.
    Lim LT, Auras R, Rubino M (2008) Prog Polym Sci 33:820CrossRefGoogle Scholar
  13. 13.
    Quiles-Carrillo L, Montanes N, Sammon C, Balart R, Torres-Giner S (2018) Ind Crops Prod 111:878CrossRefGoogle Scholar
  14. 14.
    Quiles-Carrillo L, Blanes-Martínez MM, Montanes N, Fenollar O, Torres-Giner S, Balart R (2018) Eur Polym J 98:402CrossRefGoogle Scholar
  15. 15.
    Witt U, Müller R-J, Deckwer W-D (1997) J Environ Polym Degrad 5:81CrossRefGoogle Scholar
  16. 16.
    Siegenthaler KO, Künkel A, Skupin G, Yamamoto M (2012) Ecoflex® and Ecovio®: biodegradable, performance-enabling plastics. In: Rieger B, Künkel A, Coates GW, Reichardt R, Dinjus E, Zevaco TA (eds) Synthetic biodegradable polymers. Springer, Berlin Heidelberg, p 91Google Scholar
  17. 17.
    Jiang L, Wolcott MP, Zhang J (2006) Biomacromol 7:199CrossRefGoogle Scholar
  18. 18.
    Brandelero RPH, Yamashita F, Grossmann MVE (2010) Carbohyd Polym 82:1102CrossRefGoogle Scholar
  19. 19.
    Muthuraj R, Misra M, Mohanty AK (2014) J Polym Environ 22:336CrossRefGoogle Scholar
  20. 20.
    Porter RS, Wang L-H (1992) Polymer 33(10): 2019CrossRefGoogle Scholar
  21. 21.
    Koning C, Van Duin M, Pagnoulle C, Jerome R (1998) Prog Polym Sci 23:707CrossRefGoogle Scholar
  22. 22.
    Muthuraj R, Misra M, Mohanty AK (2017) J Appl Polym Sci 135:45726CrossRefGoogle Scholar
  23. 23.
    Ryan AJ (2002) Nat Mater 1:8CrossRefGoogle Scholar
  24. 24.
    Wu D, Zhang Y, Yuan L, Zhang M, Zhou W (2010) J Polym Sci Part B 48:756CrossRefGoogle Scholar
  25. 25.
    Kim CH, Cho KY, Choi EJ, Park JK (2000) J Appl Polym Sci 77:226CrossRefGoogle Scholar
  26. 26.
    Supthanyakul R, Kaabbuathong N, Chirachanchai S (2016) Polymer 105:1CrossRefGoogle Scholar
  27. 27.
    Na Y-H, He Y, Shuai X, Kikkawa Y, Doi Y, Inoue Y (2002) Biomacromolecules 3:1179CrossRefGoogle Scholar
  28. 28.
    Zeng J-B, Li K-A, Du A-K (2015) RSC Adv 5:32546CrossRefGoogle Scholar
  29. 29.
    Xanthos M, Dagli SS (1991) Polym Eng Sci 31:929CrossRefGoogle Scholar
  30. 30.
    Sundararaj U, Macosko CW (1995) Macromolecules 28:2647CrossRefGoogle Scholar
  31. 31.
    Milner ST, Xi H (1996) J Rheol 40:663CrossRefGoogle Scholar
  32. 32.
    Villalobos M, Awojulu A, Greeley T, Turco G, Deeter G (2006) Energy 31:3227CrossRefGoogle Scholar
  33. 33.
    Torres-Giner S, Montanes N, Boronat T, Quiles-Carrillo L, Balart R (2016) Eur Polym J 84:693CrossRefGoogle Scholar
  34. 34.
    Lehermeier HJ, Dorgan JR (2001) Polym Eng Sci 41:2172CrossRefGoogle Scholar
  35. 35.
    Liu B, Xu Q (2013) J Mater Sci Chem Eng 1:9Google Scholar
  36. 36.
    Eslami H, Kamal MR (2013) J Appl Polym Sci 129:2418CrossRefGoogle Scholar
  37. 37.
    Loontjens T, Pauwels K, Derks F, Neilen M, Sham CK, Serné M (1997) J Appl Polym Sci 65:1813CrossRefGoogle Scholar
  38. 38.
    Ojijo V, Ray SS (2015) Polymer 80:1CrossRefGoogle Scholar
  39. 39.
    Frenz V, Scherzer D, Villalobos M, Awojulu AA, Edison M, Van Der Meer R (2008) Multifunctional polymers as chain extenders and compatibilizers for polycondensates and biopolymers. In: Technical papers, regional technical conference—society of plastics engineers, p. 3/1678Google Scholar
  40. 40.
    Utracki LA (2002) Can J Chem Eng 80:1008CrossRefGoogle Scholar
  41. 41.
    Al-Itry R, Lamnawar K, Maazouz A (2012) Polym Degrad Stab 97:1898CrossRefGoogle Scholar
  42. 42.
    Lin S, Guo W, Chen C, Ma J, Wang B (2012) Mater Des (1980–2015) 36: 604CrossRefGoogle Scholar
  43. 43.
    Arruda LC, Magaton M, Bretas RES, Ueki MM (2015) Polym Test 43:27CrossRefGoogle Scholar
  44. 44.
    Wang Y, Fu C, Luo Y, Ruan C, Zhang Y, Fu Y (2010) J Wuhan Univ Technol Mater Sci Ed 25:774CrossRefGoogle Scholar
  45. 45.
    Wei D, Wang H, Xiao H, Zheng A, Yang Y (2015) Carbohyd Polym 123:275CrossRefGoogle Scholar
  46. 46.
    Abdelwahab MA, Taylor S, Misra M, Mohanty AK (2015) Macromol Mater Eng 300:299CrossRefGoogle Scholar
  47. 47.
    Sun Q, Mekonnen T, Misra M, Mohanty AK (2016) J Polym Environ 24:23CrossRefGoogle Scholar
  48. 48.
    Torres-Giner S, Gimeno-Alcañiz JV, Ocio MJ, Lagaron JM (2011) J Appl Polym Sci 122:914CrossRefGoogle Scholar
  49. 49.
    Miyata T, Masuko T (1998) Polymer 39:5515CrossRefGoogle Scholar
  50. 50.
    Muthuraj R, Misra M, Mohanty AK (2015) J Appl Polym Sci 132:42189CrossRefGoogle Scholar
  51. 51.
    Ren J, Fu H, Ren T, Yuan W (2009) Carbohyd Polym 77:576CrossRefGoogle Scholar
  52. 52.
    Torres-Giner S, Montanes N, Fenollar O, García-Sanoguera D, Balart R (2016) Mater Des 108:648CrossRefGoogle Scholar
  53. 53.
    Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Compr Rev Food Sci Food Saf 9:552CrossRefGoogle Scholar
  54. 54.
    Savenkova L, Gercberga Z, Nikolaeva V, Dzene A, Bibers I, Kalnin M (2000) Process Biochem 35:573CrossRefGoogle Scholar
  55. 55.
    Costa ARM, Almeida TG, Silva SML, Carvalho LH, Canedo EL (2015) Polym Test 42:115CrossRefGoogle Scholar
  56. 56.
    Zhang K, Mohanty AK, Misra M (2012) ACS Appl Mater Interfaces 4:3091CrossRefGoogle Scholar
  57. 57.
    Zhang N, Wang Q, Ren J, Wang L (2009) J Mater Sci 44:250CrossRefGoogle Scholar
  58. 58.
    Chinsirikul W, Rojsatean J, Hararak B, Kerddonfag N, Aontee A, Jaieau K, Kumsang P, Sripethdee C (2015) Packag Technol Sci 28:741CrossRefGoogle Scholar
  59. 59.
    Auras R, Harte B, Selke S (2004) J Appl Polym Sci 92:1790CrossRefGoogle Scholar
  60. 60.
    Sanchez-Garcia MD, Gimenez E, Lagaron JM (2008) Carbohyd Polym 71:235CrossRefGoogle Scholar
  61. 61.
    Sanchez-Garcia MD, Gimenez E, Lagaron JM (2007) J Plast Film Sheeting 23:133CrossRefGoogle Scholar
  62. 62.
    Lagaron JM (2011) Multifunctional and nanoreinforced polymers for food packaging. In: Multifunctional and nanoreinforced polymers for food packaging. Woodhead Publishing, Cambridge, p 1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Technological Institute of Materials (ITM)Universitat Politècnica de València (UPV)AlcoySpain
  2. 2.Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA)Spanish Council for Scientific Research (CSIC)PaternaSpain

Personalised recommendations