Journal of Polymers and the Environment

, Volume 27, Issue 1, pp 37–49 | Cite as

Recycled Poly(Ethylene Terephthalate)/Clay Nanocomposites: Rheology, Thermal and Mechanical Properties

  • Ravindra Reddy ChowreddyEmail author
  • Katrin Nord-Varhaug
  • Florian Rapp
Original Paper


Polymer nanocomposites containing recycled poly(ethylene terephthalate) (r-PET) as a polymer matrix and Cloisite® 10A as a reinforcement were prepared through melt compounding. First, a masterbatch containing 20 wt% of Cloisite® 10A clay was prepared and later diluted with neat r-PET to obtain nanocomposites containing 1, 2, 4 and 6 wt% of clay. The rheological, thermal, mechanical and morphological properties of the PET–clay nanocomposites were characterized. The complex viscosity of the nanocomposites gradually increases with increase in clay content. The storage modulus and loss modulus of nanocomposite containing 1 wt% of clay was similar to neat r-PET but increases with increase in clay content. Incorporation of clay into a r-PET slightly increases the crystallisation temperature and degree of crystallinity due to the heterogenous nucleating effect of clay. Thermal stability and glass transition temperature of nanocomposite containing Cloisite® 10A clay at lower loadings was similar to r-PET and gradually decreases with increase in clay content. The tensile properties of PET–clay nanocomposites increased gradually with clay content. The impact strength of nanocomposites was not altered until 4 wt% and decreased at 6 wt%. Morphological investigations indicated homogeneous dispersion of clay in r-PET.


Polyethylene terephthalate Recycled Cloisite® 10A Clay Polymer nanocomposites Rheology Tensile properties 



The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7) under Grant agreement no. 309985. The authors would like to thank the Smithers Rapra, UK for their support with GPC analysis on the samples.


  1. 1.
    Karayannidis GP et al (2006) Chemical recycling of PET by glycolysis: polymerization and characterization of the dimethacrylated glycolysate. Macromol Mater Eng 291(11):1338–1347Google Scholar
  2. 2.
    Achilias D et al (2007) Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). J Hazard Mater 149(3):536–542Google Scholar
  3. 3.
    Farahat MS, Abdel-Azim A-AA, Abdel-Raowf ME (2000) Modified unsaturated polyester resins synthesized from poly (ethylene terephthalate) waste, 1. Synthesis and curing characteristics. Macromol Mater Eng 283(1):1–6Google Scholar
  4. 4.
    Throne JL (1987) Effect of recycle on properties and profits: algorithms. Adv Polym Technol 7(4):347–360Google Scholar
  5. 5.
    Polk MB (2003) Depolymerization and recycling. Synth Methods Step Growth Polym 2003:527–574Google Scholar
  6. 6.
    Awaja F, Pavel D (2005) Recycling of PET. Eur Polym J 41(7):1453–1477Google Scholar
  7. 7.
    Okada A, Usuki A (2006) Twenty years of polymer–clay nanocomposites. Macromol Mater Eng 291(12):1449–1476Google Scholar
  8. 8.
    Paul D, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49(15):3187–3204Google Scholar
  9. 9.
    Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205Google Scholar
  10. 10.
    Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43(16):6515–6530Google Scholar
  11. 11.
    Gökkurt T et al (2013) Investigation of thermal, rheological, and physical properties of amorphous poly (ethylene terephthalate)/organoclay nanocomposite films. J Appl Polym Sci 129(5):2490–2501Google Scholar
  12. 12.
    Ou CF (2003) Nanocomposites of poly (trimethylene terephthalate) with organoclay. J Appl Polym Sci 89(12):3315–3322Google Scholar
  13. 13.
    Costache MC et al (2006) Preparation and characterization of poly (ethylene terephthalate)/clay nanocomposites by melt blending using thermally stable surfactants. Poly Adv Technol 17(9–10):764–771Google Scholar
  14. 14.
    Scaffaro R et al (2011) Effect of kind and content of organo-modified clay on properties of PET nanocomposites. J Appl Polym Sci 122(1):384–392Google Scholar
  15. 15.
    Logakis E et al (2010) Low electrical percolation threshold in poly (ethylene terephthalate)/multi-walled carbon nanotube nanocomposites. Eur Polym J 46(5):928–936Google Scholar
  16. 16.
    Kim JY, Park HS, Kim SH (2007) Multiwall-carbon-nanotube-reinforced poly (ethylene terephthalate) nanocomposites by melt compounding. J Appl Polym Sci 103(3):1450–1457Google Scholar
  17. 17.
    Yesil S, Bayram G (2011) Poly (ethylene terephthalate)/carbon nanotube composites prepared with chemically treated carbon nanotubes. Polym Eng Sci 51(7):1286–1300Google Scholar
  18. 18.
    Antoniadis G et al (2009) Melt-crystallization mechanism of poly (ethylene terephthalate)/multi-walled carbon nanotubes prepared by in situ polymerization. J Polym Sci Part B Polym Phys 47(15):1452–1466Google Scholar
  19. 19.
    Anand K, Agarwal U, Joseph R (2007) Carbon nanotubes-reinforced PET nanocomposite by melt-compounding. J Appl Polym Sci 104(5):3090–3095Google Scholar
  20. 20.
    Feng R et al (2011) In situ synthesis of poly (ethylene terephthalate)/graphene composites using a catalyst supported on graphite oxide. J Mater Chem 21(11):3931–3939Google Scholar
  21. 21.
    Aoyama S et al (2014) Melt crystallization of poly (ethylene terephthalate): comparing addition of graphene vs. carbon nanotubes. Polymer 55(8):2077–2085Google Scholar
  22. 22.
    Istrate OM et al (2014) Reinforcement in melt-processed polymer–graphene composites at extremely low graphene loading level. Carbon 78:243–249Google Scholar
  23. 23.
    He J-P et al (2006) In situ preparation of poly (ethylene terephthalate)–SiO2 nanocomposites. Eur Polym J 42(5):1128–1134Google Scholar
  24. 24.
    Lu H et al (2007) Hybrid poly (ethylene terephthalate)/silica nanocomposites prepared by in-situ polymerization. Polym Compos 28(1):42–46Google Scholar
  25. 25.
    Ji Q et al (2009) Characterization of poly (ethylene terephthalate)/SiO2 nanocomposites prepared by Sol–Gel method. Compos Part A Appl Sci Manuf 40(6):878–882Google Scholar
  26. 26.
    Pegoretti A et al (2004) Recycled poly (ethylene terephthalate)/layered silicate nanocomposites: morphology and tensile mechanical properties. Polymer 45(8):2751–2759Google Scholar
  27. 27.
    Kráčalík M et al (2007) Recycled PET nanocomposites improved by silanization of organoclays. J Appl Polym Sci 106(2):926–937Google Scholar
  28. 28.
    Krishnamoorti R, Vaia RA, Giannelis EP (1996) Structure and dynamics of polymer-layered silicate nanocomposites. Chem Mater 8(8):1728–1734Google Scholar
  29. 29.
    Krishnamoorti R, Giannelis EP (1997) Rheology of end-tethered polymer layered silicate nanocomposites. Macromolecules 30(14):4097–4102Google Scholar
  30. 30.
    Ren J, Silva AS, Krishnamoorti R (2000) Linear viscoelasticity of disordered polystyrene–polyisoprene block copolymer based layered-silicate nanocomposites. Macromolecules 33(10):3739–3746Google Scholar
  31. 31.
    Hassanabadi HM, Wilhelm M, Rodrigue D (2014) A rheological criterion to determine the percolation threshold in polymer nano-composites. Rheol Acta 53(10–11):869–882Google Scholar
  32. 32.
    Ghanbari A et al (2013) Morphological and rheological properties of PET/clay nanocomposites. Rheol Acta 52(1):59–74Google Scholar
  33. 33.
    Kráčalík M et al (2007) Recycled PET–organoclay nanocomposites with enhanced processing properties and thermal stability. J Appl Polym Sci 106(3):2092–2100Google Scholar
  34. 34.
    Wu D et al (2005) Study on rheological behaviour of poly (butylene terephthalate)/montmorillonite nanocomposites. Eur Polym J 41(9):2199–2207Google Scholar
  35. 35.
    Seo M-K, Park S-J (2004) Electrical resistivity and rheological behaviors of carbon nanotubes-filled polypropylene composites. Chem Phys Lett 395(1):44–48Google Scholar
  36. 36.
    Du F et al (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37(24):9048–9055Google Scholar
  37. 37.
    Wang X-S, Li X-G, Yan D (2000) Thermal decomposition kinetics of poly (trimethylene terephthalate). Polym Degrad Stabil 69(3):361–372Google Scholar
  38. 38.
    Ray SS, Bousmina M, Okamoto K (2005) Structure and properties of nanocomposites based on poly (butylene succinate-co-adipate) and organically modified montmorillonite. Macromol Mater Eng 290(8):759–768Google Scholar
  39. 39.
    Xie W et al (2001) Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite. Chem Mater 13(9):2979–2990Google Scholar
  40. 40.
    Durmus A et al (2009) Nonisothermal crystallization kinetics of poly(ethylene terephthalate)/clay nanocomposites prepared by melt processing. Polymers 31:1056–1066Google Scholar
  41. 41.
    Imai Y, Inukai Y, Tateyama H (2003) Properties of poly (ethylene terephthalate)/layered silicate nanocomposites prepared by two-step polymerization procedure. Polym J Tokyo 35(3):230–235Google Scholar
  42. 42.
    Greco A et al (2010) Analysis of the structure and mass transport properties of clay nanocomposites based on amorphous PET. J Appl Polym Sci 118(6):3666–3672Google Scholar
  43. 43.
    Greco A, Gennaro R, Rizzo M (2012) Glass transition and cooperative rearranging regions in amorphous thermoplastic nanocomposites. Polym Int 61(8):1326–1333Google Scholar
  44. 44.
    Corcione CE, Frigione M (2012) Characterization of nanocomposites by thermal analysis. Materials 5(12):2960–2980Google Scholar
  45. 45.
    Ou CF, Ho MT, Lin JR (2003) The nucleating effect of montmorillonite on crystallization of PET/montmorillonite nanocomposite. J Polym Res 10(2):127–132Google Scholar
  46. 46.
    Manchado ML et al (2005) Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene composites prepared by melt processing. Carbon 43(7):1499–1505Google Scholar
  47. 47.
    Kong Y, Hay J (2003) Multiple melting behaviour of poly (ethylene terephthalate). Polymer 44(3):623–633Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Norner Research ASStathelleNorway
  2. 2.Fraunhofer Institute for Chemical Technology ICTPfinztalGermany

Personalised recommendations