Advertisement

Journal of Polymers and the Environment

, Volume 27, Issue 1, pp 74–83 | Cite as

Characterization of Environmentally Friendly Polymers by Inverse Gas Chromatography: II, Poly(3-hydroxybutyric acid)

  • Harvey Mosher
  • Zeki Y. Al-SaighEmail author
Original Paper
  • 31 Downloads

Abstract

The surface thermodynamics of poly(3-hydroxybutyric acid) (PHBA) as a biodegradable polymer, was characterized using the inverse gas chromatography method. Gel permeation chromatography and differential scanning calorimetry method was also used to measure the molar mass, polydispersity, glass and melting temperatures. Twenty-seven solutes (solvents) with different families having a variety of chemical natures were used to measure the strength of the interaction forces of these solutes with PHBA. All these solutes showed an endothermic interactions which varied from one family to another. All families showed a chemical dependence on the interaction coefficients, a successful correction was used to eliminate the chemical dependence which resulted in exothermic interactions. Retention diagrams of all solvents showed no crystallinity occurred at the temperature range used. The molar heat of sorption of all solutes was measured from the retention diagrams ranged from − 19.41 for acetone to − 90.38 kJ/mol for cyclohexane. The dispersive component of the surface energy of PHBA was measured using alkanes which ranged from 24.42 mJ/m2 at 80 °C to 13.94 mJ/m2 at 120 °C. The decrease in surface energy attributed to the weakening of the surface at a higher temperature due to the melt and expansion of the surface.

Keywords

Poly(3-hydroxybutyric acid) Inverse gas chromatography Molar heat of sorption Surface energy Interaction coefficients Differential scanning calorimetry 

References

  1. 1.
    Al-Ghamdi A, Melibari M, Al-Saigh ZY (2005) J Polym Environ 13:319CrossRefGoogle Scholar
  2. 2.
    Batz H-G, Sluka P, Jendrossek D, Steinbuechel A (1995) Eur Pat Appl EP 679412(A1):1102Google Scholar
  3. 3.
    Jacquel N, Lo CW, Wu HS, Wang SS (2007) AlChE J 53:2704CrossRefGoogle Scholar
  4. 4.
    Senior PJ, Dawes EA (1973) Biochem J 134:225CrossRefGoogle Scholar
  5. 5.
    Dunlop WF, Robards AW (1973) J Bacteriol 114:1271Google Scholar
  6. 6.
    Ellar D, Lundgren DG, Okamma K, Marchessault RH (1968) J Mol Biol 35:489CrossRefGoogle Scholar
  7. 7.
    Lundgren DG, Pfister RM, Merrick JM (1964) J Gen Microbiol 34:441CrossRefGoogle Scholar
  8. 8.
    Steinbüchel A, Debzi EM, Marchessault RH, Timm A (1993) Appl Microbiol Biotechnol 39:443CrossRefGoogle Scholar
  9. 9.
    Kawaguchi Y, Doi Y (1990) FEMS Microbiol Lett 79:151CrossRefGoogle Scholar
  10. 10.
    Fukui T, Kato M, Matsusaki H, Iwata T, Doi Y (1998) FEMS Microbiol Lett 164:219CrossRefGoogle Scholar
  11. 11.
    Stockdale H, Ribbons DW, Dawes EA (1968) J Bacteriol 95:1798Google Scholar
  12. 12.
    Soma P, Amal KP (2002) Curr Sci 83:25Google Scholar
  13. 13.
    Meyers R (ed) (2000) Inverse gas chromatography in analysis of polymers and rubbers. In: Encyclopedia of analytical chemistry: instrumentation and applications, vol 9. Wiley, Chichester, pp 7759–7792Google Scholar
  14. 14.
    Al-Saigh ZY (1996) Polym Int 40: 25CrossRefGoogle Scholar
  15. 15.
    Al-Saigh ZY (1999) Polymer 40:3479CrossRefGoogle Scholar
  16. 16.
    Chehimi MM, Pigois-Landureau E, Delamar MM (1992) J Chim Phys 89:1173CrossRefGoogle Scholar
  17. 17.
    Landureau E, Chehimi MM (1993) J Appl Polym Sci 49:183CrossRefGoogle Scholar
  18. 18.
    Chehimi MM, Abel ML, Perruchot C, Delamar M, Lascelles SF, Armes SP (1999) Synth Metals 104:51CrossRefGoogle Scholar
  19. 19.
    Papirer E, Eckhardt A, Muller F, Yvon J (1990) J Mater Sci 25:5109CrossRefGoogle Scholar
  20. 20.
    Papirer E, Ligner G, Vidal A, Balard H, Mauss F (1990) In: Leyden E, Collins WT (eds) Chemically modified oxide surfaces. Gordon and Breach, New York, p 361Google Scholar
  21. 21.
    Papirer E, Balard H, Vidal A (1988) Eur Polym J 24:783CrossRefGoogle Scholar
  22. 22.
    Papirer E, Roland P, Nardin M, Balard H (1986) J Colloid Interface Sci 113:62CrossRefGoogle Scholar
  23. 23.
    Al-Saigh ZY, Chen P (1991) Macromolecules 24:3788CrossRefGoogle Scholar
  24. 24.
    Al-Gahmdi A, Al-Saigh ZY (2000) J Polym Sci B B38:1155CrossRefGoogle Scholar
  25. 25.
    Al-Saigh ZY, Munk P (1984) Macromolecules 17:803CrossRefGoogle Scholar
  26. 26.
    Al-Saigh ZY (1997) Int J Polym Charact Anal 3:249CrossRefGoogle Scholar
  27. 27.
    Papirer E, Brendle E, Ballard H, Vergelati C (2000) J Adhesion Sci Technol 14:321CrossRefGoogle Scholar
  28. 28.
    Tshabalala MA, Denes AR, Williams RS, (1999) J Appl Polym Sci 73:399CrossRefGoogle Scholar
  29. 29.
    Tshabalala MA (1997) J Appl Polym Sci 65:1013CrossRefGoogle Scholar
  30. 30.
    Boutboul A, Lenfant F, Giampaoli P, Feigenbaum A, Ducruet V (2002) J Chromatogr A 969:9CrossRefGoogle Scholar
  31. 31.
    Munk P (1991) Modern methods of polymer characterization. In: Barth H, Mays JW (eds) Chemical analysis: a series of monographs on analytical chemistry and its applications, Winefordner, J. D. series, 113. Wiley, Hoboken, pp 151–200Google Scholar
  32. 32.
    Fowkes FM (1964) Ind Eng Chem 561:40CrossRefGoogle Scholar
  33. 33.
    Fowkes FM (1967) Ind Eng Chem Prod Res Dev 56:40CrossRefGoogle Scholar
  34. 34.
    Card TW, Al-Saigh ZY, Munk P (1984) J Chromatogr 301:261CrossRefGoogle Scholar
  35. 35.
    Munk P, Hattam P, Abdual-Azim A, Du Q (1990) Makromol Chem Macromol Symp 38:205CrossRefGoogle Scholar
  36. 36.
    Prolongo MG, Masegosa RM, Horta A (1989) Macromolecules 22:4346CrossRefGoogle Scholar
  37. 37.
    Shi ZH, Schreiber HP (1991) Macromolecules 24:3522CrossRefGoogle Scholar
  38. 38.
    Vanlautem N, Gilain J (1982) US Patent 4310684Google Scholar
  39. 39.
    Terada M, Marchessault RH (1999) Int J Biol Macromol 25:207CrossRefGoogle Scholar
  40. 40.
    Hildebrand J, Scott R (1949) Solubility of non-electrolytes, 3rd edn. Reinhold, New YorkGoogle Scholar
  41. 41.
    Hansen CM (1967) J Paint Technol 39:511Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Buffalo StateState University of New YorkBuffaloUSA

Personalised recommendations