Advertisement

Journal of Polymers and the Environment

, Volume 27, Issue 1, pp 61–73 | Cite as

Effect of Maleated PLA on the Properties of Rotomolded PLA-Agave Fiber Biocomposites

  • Martín E. González-López
  • Aida A. Pérez-Fonseca
  • Erick O. Cisneros-López
  • Ricardo Manríquez-González
  • Daniel E. Ramírez-Arreola
  • Denis Rodrigue
  • Jorge R. Robledo-OrtízEmail author
Original Paper

Abstract

In this work, agave fibers were surface treated using maleated PLA (MAPLA) in order to increase the fiber content (from 10 up to 40% wt.) in polylactic acid (PLA) biocomposites produced by rotational molding and to study the effect of the agave fiber and its treatment on the physical, mechanical and thermal properties of the biocomposites. This chemical modification between agave fibers and MAPLA was evaluated by FTIR spectroscopy. In general the results indicate that MAPLA surface treatment produces a more homogeneous morphology with lower interfacial gaps and overall porosity, especially at higher agave contents. This improved compatibility promoted better stress transfer leading to increased mechanical properties. For example, the tensile strength and modulus of treated fiber composites increased by up to 68% (from 25 to 41 MPa) and 32% (from 1.30 to 1.74 GPa) respectively, in comparison with untreated fiber composites. Fiber surface treatment also decreases hydrophilicity, lowering water absorption and diffusion coefficient. From thermo–mechanical analyses, the damping behavior of the biocomposites decreased with MAPLA treatment since a stronger interface is able to sustain higher stresses and dissipates less energy. Finally, the thermal stability was also improved as a result of better interfacial chemical bonding leading to a 12 °C increase in thermal stability (from 254 to 266 °C).

Keywords

Surface treatment Biocomposite Biopolymer Rotomolding Agave fibers MAPLA 

Notes

Acknowledgements

This research was supported by the Secretaría de Educación Pública PRODEP-NPTC Mexican program (#195010). One of the authors (M.E. González-López) thanks the Mexican National Council for Science and Technology (CONACyT) for a scholarship (#587384) and the Academic Secretariat of the University of Guadalajara (CUCEI) for the complementary financial support for a research internship at Université Laval. The technical support of D. Chimeni and Y. Giroux is also highly appreciated.

References

  1. 1.
    Kwon HJ, Sunthornvarabhas J, Park JW, Lee JH, Kim HJ, Piyachomkwan K, Sriroth K, Cho D (2014) Compos Part B 56:232CrossRefGoogle Scholar
  2. 2.
    Tokiwa Y, Calabia BP (2006) Appl Microbiol Biotechnol 72:244CrossRefGoogle Scholar
  3. 3.
    Baheti V, Militky J, Marsalkova M (2013) Polym Compos 34:2133CrossRefGoogle Scholar
  4. 4.
    Awal A, Rana M, Sain M (2015) Mech Mater 80:87CrossRefGoogle Scholar
  5. 5.
    Auras R, Harte B, Selke S (2004) Macromol Biosci 4:835CrossRefGoogle Scholar
  6. 6.
    Pérez-Fonseca AA, Robledo-Ortíz JR, González-Núñez R, Rodrigue D (2016) J Appl Polym Sci 133:43750CrossRefGoogle Scholar
  7. 7.
    Greco A, Maffezzoli A (2016) Polym Degrad Stab 132:213CrossRefGoogle Scholar
  8. 8.
    Jiang L, Wolcott MP, Zhang J (2006) Biomacromolecules 7:199CrossRefGoogle Scholar
  9. 9.
    Zhang M, Thomas N (2011) Adv Polym Technol 2:67CrossRefGoogle Scholar
  10. 10.
    Hinchcliffe SA, Hess KM, Srubar WV (2016) Compos Part B 95:346CrossRefGoogle Scholar
  11. 11.
    Harmaen AS, Khalina AK, Azowa I, Hassan MA, Tarmian A, Jawaid M (2015) Polym Compos 36:576CrossRefGoogle Scholar
  12. 12.
    Le Moigne N, Longerey M, Taulemesse JM, Bénézet JC, Bergeret A (2014) Ind Crop Prod 52:481CrossRefGoogle Scholar
  13. 13.
    Avella M, Martuscelli E, Raimo M (2000) J Mater Sci 35:523CrossRefGoogle Scholar
  14. 14.
    Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Compos Sci Tech 68:424CrossRefGoogle Scholar
  15. 15.
    Yu T, Ren J, Li S, Yuan H, Li Y (2010) Compos Part A 41:499CrossRefGoogle Scholar
  16. 16.
    Luo H, Zhang C, Xiong G, Wan Y (2016) Polym Compos 37:3499CrossRefGoogle Scholar
  17. 17.
    Orue A, Jauregi A, Unsuain U, Labidi J, Eceiza A, Arbelaiz A (2016) Compos Part A 84:186CrossRefGoogle Scholar
  18. 18.
    Cisneros-López EO, Pérez-Fonseca AA, Fuentes-Talavera FJ, Anzaldo J, González-Núñez R, Rodrigue D, Robledo-Ortíz JR (2016) Polym Eng Sci 56:856CrossRefGoogle Scholar
  19. 19.
    Cisneros-López EO, González-López ME, Pérez-Fonseca AA, González Núñez R, Rodrigue D, Robledo-Ortíz JR (2017) Compos Interface 24:35CrossRefGoogle Scholar
  20. 20.
    Gunning MA, Geever LM, Killion JA, Lyons JG, Higginbotham CL (2014) Polym Compos 35:1792CrossRefGoogle Scholar
  21. 21.
    Yu T, Jiang N, Li Y (2014) Compos Part A 64:139CrossRefGoogle Scholar
  22. 22.
    Arias A, Heuzey MC, Huneault MA (2013) Cellulose 20:439CrossRefGoogle Scholar
  23. 23.
    Nyambo C, Mohanty AK, Misra M (2011) Macromol Mater Eng 296:710CrossRefGoogle Scholar
  24. 24.
    Lv S, Gu J, Tan H, Zhang Y (2016) J Appl Polym Sci 133:43295Google Scholar
  25. 25.
    Jiang A, Xu X, Wu H (2016) Polym Compos 37:802CrossRefGoogle Scholar
  26. 26.
    Greco A, Maffezzoli M (2015) Adv Polym Technol 34:21505CrossRefGoogle Scholar
  27. 27.
    Lu T, Liu S, Jiang M, Xu X, Wang Y, Wang Z, Gou J, Hui D, Zhou Z (2014) Compos Part B 62:191CrossRefGoogle Scholar
  28. 28.
    Brewer CE, Chuang VJ, Masiello CA, Gonnermann H, Gao X, Dugan B, Driver LE, Panzacchi P, Zygourakis K, Davies CA (2014) Biomass Bioenerg 66:176CrossRefGoogle Scholar
  29. 29.
    Martynenko A (2014) Dry Technol 32:1319CrossRefGoogle Scholar
  30. 30.
    Xu H, Zhou J, Dong Q, Tan Y (2017) Mater Des 124:108CrossRefGoogle Scholar
  31. 31.
    Carter HG, Kibler KG (1978) J Compos Mater 12:118CrossRefGoogle Scholar
  32. 32.
    Orozco VH, Brostow W, Chonkaew W, López BL (2009) Macromol Symp 277:69CrossRefGoogle Scholar
  33. 33.
    Verdaguer A, Rodrigue D (2014) Effect of surface treatment on the mechanical properties of wood-plastics composites produced by dry-blending. In: 72th annual technical conference & exhibition, Society of Plastics Engineers, Las Vegas, NV, USAGoogle Scholar
  34. 34.
    Korotkova E, Pranovich A, Wärnå J, Salmi T, Murzin DY, Willför S (2015) Green Chem 17:5058CrossRefGoogle Scholar
  35. 35.
    Melo JDD, Carvalho LFM, Medeiros AM, Souto CRO, Paskocimas CA (2012) Compos Part B 43:2827CrossRefGoogle Scholar
  36. 36.
    Jandas PJ, Mohanty S, Nayak SK (2011) Polym Compos 32:1689CrossRefGoogle Scholar
  37. 37.
    Csikós Á, Faludi G, Domján A, Renner K, Móczó J, Pukánszky B (2015) Eur Polym J 68:592CrossRefGoogle Scholar
  38. 38.
    Raymond A, Rodrigue D (2014) Effect of surface treatment on the properties of wood-plastics composites produced by rotomolding. In: 72th annual technical conference & exhibition, Society of Plastics Engineers, Las Vegas, NV, USAGoogle Scholar
  39. 39.
    Mahfoudh A, Cloutier A, Rodrigue D (2013) Polym Compos 34:510CrossRefGoogle Scholar
  40. 40.
    Kaynak C, Meyva Y (2014) Polym Adv Technol 25:1622CrossRefGoogle Scholar
  41. 41.
    Teymoorzadeh H, Rodrigue D (2015) J Bio Mater Bio 9:1CrossRefGoogle Scholar
  42. 42.
    Kaymakci A, Ayrılmis N, Gülec T (2013) Bioresources 8:592Google Scholar
  43. 43.
    Bax B, Müssig J (2008) Compos Sci Technol 68:1601CrossRefGoogle Scholar
  44. 44.
    Bledzki AK, Jaszkiewicz A, Scherzer D (2009) Compos Part A 40:404CrossRefGoogle Scholar
  45. 45.
    Ning N, Fu S, Zhang W, Chen F, Wang K, Deng H, Zhang Q, Fu Q (2012) Prog Polym Sci 37:1425CrossRefGoogle Scholar
  46. 46.
    Rajesh G, Prasad AR, Gupta A (2015) J Reinf Plast Compos 34:951CrossRefGoogle Scholar
  47. 47.
    Orue A, Eceiza A, Peña-Rodriguez C, Arbelaiz A (2016) Materials 9:400CrossRefGoogle Scholar
  48. 48.
    Arbelaiz A, Fernandez B, Ramos JA, Regegi A, Llano-Ponte R, Mondragon I (2005) Compos Sci Technol 65:1582CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Martín E. González-López
    • 1
  • Aida A. Pérez-Fonseca
    • 2
  • Erick O. Cisneros-López
    • 2
  • Ricardo Manríquez-González
    • 1
  • Daniel E. Ramírez-Arreola
    • 3
  • Denis Rodrigue
    • 4
  • Jorge R. Robledo-Ortíz
    • 1
    Email author
  1. 1.Departamento de Madera, Celulosa y Papel, CUCEIUniversidad de GuadalajaraZapopanMexico
  2. 2.Departamento de Ingeniería Química, CUCEIUniversidad de GuadalajaraGuadalajaraMexico
  3. 3.Departamento de Ingenierías, CUCSURUniversidad de GuadalajaraAutlán de NavarroMexico
  4. 4.Department of Chemical Engineering and CERMAUniversité LavalQuebec CityCanada

Personalised recommendations