Journal of Polymers and the Environment

, Volume 26, Issue 11, pp 4293–4302 | Cite as

Hybrid Adsorbent Materials Obtained by the Combination of Poly(ethylene-alt-maleic anhydride) with Lignin and Lignosulfonate

  • Guido PanzarasaEmail author
  • Alina Osypova
  • Javier Ribera
  • Francis W. M. R. Schwarze
  • Fiorenza Quasso
  • Giovanni Consolati
Original Paper


Lignin is one of the most available biomass products, but its potential for the development of functional materials has yet to be unleashed. Here, the modification of lignin and lignosulfonate with poly(ethylene-alt-maleic anhydride) [P(E-alt-MA)], a functional polymer of wide industrial use, is accomplished by means of a simple esterification reaction. As a result, hybrid adsorbent materials for water purification can be obtained, which were thoroughly characterized. The combination of P(E-alt-MA) with lignin increased hydrophilicity of the latter, making it dispersible in aqueous environments, while with lignosulfonate it gave rise to a water-insoluble, thus easily recoverable, product. The adsorption properties of the resulting products have been tested against a model water pollutant (methylene blue), demonstrating remarkable adsorption speed (in the order of minutes), adsorption efficiency and stability over a wide range of pH (2–12). Moreover, after the incorporation of magnetite nanoparticles by in situ synthesis, adsorbent materials able to be magnetically recovered were developed.

Graphical Abstract


Lignin Lignosulfonate Poly(ethylene-alt-maleic anhydride) Adsorbent materials Water purification 



The authors are grateful to the anonymous reviewers for their help improving the quality of this manuscript. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10924_2018_1299_MOESM1_ESM.pdf (725 kb)
Supplementary material 1 (PDF 724 KB)


  1. 1.
    Eichhorn SJ, Gandini A (2010) Materials from renewable resources. MRS Bull 35:187–193. CrossRefGoogle Scholar
  2. 2.
    Kim HC, Mun S, Ko HU et al (2016) Renewable smart materials. Smart Mater Struct 25:073001CrossRefGoogle Scholar
  3. 3.
    Schnepp Z (2013) Biopolymers as a flexible resource for nanochemistry. Angew Chem Int Ed 52:1096–1108CrossRefGoogle Scholar
  4. 4.
    Chung H, Washburn NR (2015) Extraction and types of lignin. In: Omar F, Mohini S (eds) Lignin in polymer composites. William Andrew, New York, pp 13–25Google Scholar
  5. 5.
    Gargulak JD, Lebo SE Jr, McNally TJ (2001) Lignin. In: Kroschwitz JI (ed) Kirk-Othmer encyclopedia of chemical technology, 4th edn. Wiley, New YorkGoogle Scholar
  6. 6.
    Duval A, Lawoko M (2014) A review on lignin-based polymeric, micro- and nano-structured materials. React Funct Polym 85:78–96. CrossRefGoogle Scholar
  7. 7.
    Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39:1266–1290CrossRefGoogle Scholar
  8. 8.
    Doherty WOS, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crops Prod 33:259–276CrossRefGoogle Scholar
  9. 9.
    Upton BM, Kasko AM (2016) Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem Rev 116:2275–2306CrossRefGoogle Scholar
  10. 10.
    Kun D, Pukánszky B (2017) Polymer/lignin blends: interactions, properties, applications. Eur Polym J 93:618–641CrossRefGoogle Scholar
  11. 11.
    Aro T, Fatehi P (2017) Production and application of lignosulfonates and sulfonated lignin. ChemSusChem 10:1861–1877CrossRefGoogle Scholar
  12. 12.
    Schwarzenbach RP, Egli T, Hofstetter TB et al (2010) Global water pollution and human health. Annu Rev Environ Resour 35:109–136. CrossRefGoogle Scholar
  13. 13.
    Wang Q, Yang Z (2016) Industrial water pollution, water environment treatment, and health risks in China. Environ Pollut 218:358–365. CrossRefPubMedGoogle Scholar
  14. 14.
    Shannon M, Bohn PW, Elimelech M et al (2008) Science and technology for water purification in the coming decades. Nature 452:301–310. CrossRefPubMedGoogle Scholar
  15. 15.
    Tuck CO, Pérez E, Horváth IT et al (2012) Valorization of biomass: deriving more value from waste. Science 337:695–699CrossRefGoogle Scholar
  16. 16.
    Panzarasa G, Osypova A, Consolati G et al (2018) Preparation of a sepia melanin and poly (ethylene-alt-maleic anhydride) hybrid material as an adsorbent for water purification. Nanomaterials 8:54. CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Gaita E, Evangelisti C, Panzarasa G (2018) A proof-of-concept portable water purification device obtained from PET bottles and a magnetite-carbon nanocomposite. Recycling 3:31. CrossRefGoogle Scholar
  18. 18.
    Pompe T, Zschoche S, Herold N et al (2003) Maleic anhydride copolymers-a versatile platform for molecular biosurface engineering. Biomacromolecules 4:1072–1079. CrossRefPubMedGoogle Scholar
  19. 19.
    Thielemans W, Wool RP (2005) Lignin esters for use in unsaturated thermosets: lignin modification and solubility modeling. Biomacromolecules 6:1895–1905. CrossRefPubMedGoogle Scholar
  20. 20.
    Jiang C, He H, Yao X et al (2018) The aggregation structure regulation of lignin by chemical modification and its effect on the property of lignin/styrene–butadiene rubber composites. J Appl Polym Sci. CrossRefGoogle Scholar
  21. 21.
    Mamdouh MN, MacKay GDM (1984) Mechanism of thermal decomposition of lignin. Wood Fiber Sci 16:441–453Google Scholar
  22. 22.
    Shao Y, Guizani C, Grosseau P et al (2017) Thermal characterization and kinetic analysis of microfibrillated cellulose/lignosulfonate blends. J Anal Appl Pyrolysis 124:25–34. CrossRefGoogle Scholar
  23. 23.
    Jakab E, Till F, Székely T, Faix O (1991) Thermogravimetry/mass spectrometry of various lignosulfonates as well as of a kraft and acetosolv lignin. Holzforschung. CrossRefGoogle Scholar
  24. 24.
    Derkacheva O, Sukhov D (2008) Investigation of lignins by FTIR spectroscopy. Macromol Symp 265(1):61–68CrossRefGoogle Scholar
  25. 25.
    Duval A, Molina-Boisseau S, Chirat C (2015) Fractionation of lignosulfonates: comparison of ultrafiltration and ethanol solubility to obtain a set of fractions with distinct properties. Holzforschung 69:127–134. CrossRefGoogle Scholar
  26. 26.
    Shen Q, Zhang T, Zhu MF (2008) A comparison of the surface properties of lignin and sulfonated lignins by FTIR spectroscopy and wicking technique. Colloids Surf A 320:57–60. CrossRefGoogle Scholar
  27. 27.
    Xiao B, Sun XF, Sun R (2001) Chemical modification of lignins with succinic anhydride in aqueous systems. Polym Degrad Stab 71:223–231. CrossRefGoogle Scholar
  28. 28.
    Wang F, Yang X, Zou Y (2015) The esterification of sodium lignosulfonate with maleic anhydride in water solution. Int J Polym Anal Charact 20:69–81. CrossRefGoogle Scholar
  29. 29.
    Delben F, Paoletti S, Porasso RD, Benegas JC (2006) Potentiometric titrations of maleic acid copolymers in dilute aqueous solution: experimental results and theoretical interpretation. Macromol Chem Phys 207:2299–2310. CrossRefGoogle Scholar
  30. 30.
    Rivas BL, Pooley SA, Pereira E et al (2006) Poly(ethylene-alt-maleic acid) as complexing reagent to separate metal ions using membrane filtration. J Appl Polym Sci 101:2057–2061. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Polymer Engineering and ScienceMontanuniversitätLeobenAustria
  2. 2.Sorbonne Universités, UPMC Univ Paris 06ParisFrance
  3. 3.Empa Materials Science and TechnologyLaboratory for Applied Wood MaterialsSt. GallenSwitzerland
  4. 4.Department of Aerospace Science and TechnologyPolitecnico di MilanoMilanoItaly
  5. 5.INFNMilanoItaly
  6. 6.Laboratory for Soft and Living Materials, Department of MaterialsETH ZürichZurichSwitzerland
  7. 7.Innovative Sensor Technology IST AGEbnat-KappelSwitzerland

Personalised recommendations