Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 11, pp 4221–4232 | Cite as

Improving the Rheological and Mechanical Properties of Recycled PET Modified by Macromolecular Chain Extenders Synthesized by Controlled Radical Polymerization

  • Juan José Benvenuta Tapia
  • Martin Hernández Valdez
  • Jorge Cerna Cortez
  • Víctor Martin Díaz García
  • Heber Landeros Barrios
Original Paper
  • 46 Downloads

Abstract

In this work, a series of reactive copolymers of glycidyl methacrylate (G), styrene (S) and acrylonitrile (AN), were synthesized through reversible addition-fragmentation chain transfer polymerization and evaluated as macromolecular chain extenders in reactive extrusion of recycled poly(ethylene terephthalate) (rPET). The results obtained indicate that the addition of the reactive copolymers as chain extenders modifies the chain conformation in rPET causing low crystallization rate and low crystallinity. The physical and rheological properties (melt flow and intrinsic viscosity) of chain-extended rPET improved, rendering better processability. rPET modified with polymeric chain extenders shows improved rheological properties (complex viscosity, storage and loss modulus) and also displays higher elongation at break and impact properties as the GMA content in the chain extenders increase.

Keywords

Polyethylene terephthalate Rheological properties RAFT polymerization Reactive copolymers 

Notes

Acknowledgements

We acknowledge the technical support of Francisco Méndez and Luis Reyes from Resirene Applications Laboratory.

References

  1. 1.
    Srithep Y, Javadi A, Pilla S, Turng SL, Gong S, Clemons C, Peng J (2011) Processing and characterization of recycled poly(ethylene terephthalate) blends with chain extenders, thermoplastic elastomer, and/or poly(butylene adipate-co-terephthalate). J Polym Eng Sci 51:1023–1032CrossRefGoogle Scholar
  2. 2.
    George N, Kurian T (2014) Recent developments in the chemical recycling of postconsumer poly(ethylene terephthalate). Ind Eng Chem Res 53:14185–14198CrossRefGoogle Scholar
  3. 3.
    Farahat MS, Abdel-Azim AA, Abdel-Raowf ME (2000) Modified unsaturated polyester resins synthesized from poly(ethylene terephthalate) waste, 1. Synthesis and curing characteristics. Macromol Mater Eng 283:1–6CrossRefGoogle Scholar
  4. 4.
    Carta D, Cao G, D’Angeli C (2003) Chemical recycling of poly(ethylene terephthalate)(pet) by hydrolysis and glycolysis. Environ Sci Pollut Res 10:390–394CrossRefGoogle Scholar
  5. 5.
    Goje AS, Mishra S (2003) Chemical kinetics, simulation, and thermodynamics of glycolytic depolymerization of poly(ethylene terephthalate) waste with catalyst optimization for recycling of value added monomeric products. Macromol Mater Eng 288:326–336CrossRefGoogle Scholar
  6. 6.
    Yamaye M, Hashime M, Yamamoto K, Kosugi K (2002) Chemical recycling of poly(ethylene terephthalate). 2. Preparation of terephthalohydroxamic acid and terephthalohydrazide. Ind Eng Chem Res 41:3993–3998CrossRefGoogle Scholar
  7. 7.
    Scheirs J (1998) Polymer recycling: science, technology and applications. Wiley, LondonGoogle Scholar
  8. 8.
    Awaja F, Pavel D (2005) Recycling of PET. Eur Polym J 41:1453–1477CrossRefGoogle Scholar
  9. 9.
    Raffa P, Coltelli MB, Savi S, Bianchi S, Castelvetro V (2012) Chain extension and branching of poly(ethylene terephthalate) (PET) with di- and multifunctional epoxy or isocyanate additives: an experimental and modelling study. React Funct Polym 72:50–60CrossRefGoogle Scholar
  10. 10.
    Villalobos M, Awojulu A, T (2006) Oligomeric chain extenders for economic reprocessing and recycling of condensation plastics. Greeley Energy 31:3227–3234CrossRefGoogle Scholar
  11. 11.
    Coltelli MB, Maggiore ID, Savi S, Aglietto M, Ciardelli F (2005) Modified styrene-b-(ethylene-co-1-butene)-b-styrene triblock copolymer as compatibiliser precursor in polyethylene/poly(ethylene terephthalate) blends. Polym Degrad Stab 90:211–223CrossRefGoogle Scholar
  12. 12.
    Coltelli MB, Aglietto M, Ciardelli F (2008) Influence of the transesterification catalyst structure on the reactive compatibilization and properties of poly(ethylene terephthalate) (PET)/dibutyl succinate functionalized poly(ethylene) blends. Eur Polym J 44:1512–1524CrossRefGoogle Scholar
  13. 13.
    Coltelli MB, Bianchi S, Savi S, Liuzzo V, Aglietto M (2003) Metal catalysis to improve compatibility at PO/PET blends interfaces. Macromol Symp 204:227–236CrossRefGoogle Scholar
  14. 14.
    Coltelli MB, Savi S (2004) A model study of Ti(OBu)4 catalyzed reactions during reactive blending of polyethylene (PE) and poly(ethylene terephthalate) (PET). Macromol Macromol Mater Eng 289:400–412CrossRefGoogle Scholar
  15. 15.
    . Torres N, Robin J, Boutevin B (2001) Chemical modification of virgin and recycled poly(ethylene terephthalate) by adding of chain extenders during processing J. Appl Polym Sci 79:1816–1824CrossRefGoogle Scholar
  16. 16.
    Xanthos M (2002) In: Fakirov S (ed) Handbook of thermoplastic polyesters. Wiley–VCH, WeinheimGoogle Scholar
  17. 17.
    Xanthos M, Young MW, Karayannidis GP, Bikiaris DN (2001) Reactive modification of polyethylene terephthalate with polyepoxides. Polym Eng Sci 41:643–655CrossRefGoogle Scholar
  18. 18.
    Japon S, Boogh L, Leterrier Y, Manson JA (2000) Reactive processing of poly(ethylene terephthalate) modified with multifunctional epoxy-based additives. Polymer 41:5809–5818CrossRefGoogle Scholar
  19. 19.
    Barner-Kowollik C (2008) Handbook of RAFT polymerization. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  20. 20.
    Moad G, Rizzardo E, Thang SH (2005) Living radical polymerization by the RAFT process. Aust J Chem 58:379–430CrossRefGoogle Scholar
  21. 21.
    Moad G, Rizzardo E, Thang SH (2012) Living radical polymerization by the RAFT process: a third update. Aust J Chem 65:985–1036CrossRefGoogle Scholar
  22. 22.
    Bai R, You Y, Pan Y (2001) 60Co γ-irradiation-initiated “living” free-radical polymerization in the presence of dibenzyl trithiocarbonate. Macromol Chem Phys Rapid Commun 22:315–319CrossRefGoogle Scholar
  23. 23.
    American Society for Testing and Materials (1994) ASTM D 2857: standard test method for dilute solution viscosity of polymers. American Society for Testing and Materials, PhiladelphiaGoogle Scholar
  24. 24.
    Sanchéz NB, Dias ML, Pacheco E (2005) Comparative techniques for molecular weight evaluation of poly(ethylene terphthalate) (PET). Polym Test 24:688–693CrossRefGoogle Scholar
  25. 25.
    Fakirov S (1994) Handbook of thermoplastics. Marcel Dekker, New YorkGoogle Scholar
  26. 26.
    Jabarin SA (1987) Crystallization kinetics of polyethylene terephthalate. I. Isothermal crystallization from the melt. J Appl Polym Sci 34:85–96CrossRefGoogle Scholar
  27. 27.
    Ebeling B, Vana P (2011) Multiblock copolymers of styrene and butyl acrylate via polytrithiocarbonate-mediated RAFT polymerization. Polymers 3:719–739CrossRefGoogle Scholar
  28. 28.
    Wang W, Hutchinson RA (2008) PLP/SEC/NMR study of free radical copolymerization of styrene and glycidyl methacrylate. Macromolecules 41:9011–9018CrossRefGoogle Scholar
  29. 29.
    Brar AS, Pradhan DR (2003) Investigation of microstructure of the acrylonitrile-styrene-glycidyl methacrylate terpolymers by 1D and 2D NMR spectroscopy. J Appl Polym Sci 89:1779–1790CrossRefGoogle Scholar
  30. 30.
    Shenoy AV, Saini DR (1986) Melt flow index: more than just a quality control parameter. Part I. Adv Polym Technol 6:1–58CrossRefGoogle Scholar
  31. 31.
    Nascimento CR, Azuma Ch, Bretas R, Farah M, Dias ML (2010) Chain extension reaction in solid-state polymerization of recycled PET: the influence of 2,2-Bis-2-oxazoline and pyromellitic anhydride. J Appl Polym Sci 115:3177–3188CrossRefGoogle Scholar
  32. 32.
    Turner SR (2004) Development of amorphous copolyesters based on 1,4-cyclohexanedimethanol. J Polym Sci Part A: Polym Chem 42:5847–5852CrossRefGoogle Scholar
  33. 33.
    Härth M, Kaschta J, Schubert DW (2014) Shear and elongational flow properties of long-chain branched poly(ethylene terephthalates) and correlations to their molecular structure. Macromolecules 47:4471–4478CrossRefGoogle Scholar
  34. 34.
    Nguyen QT, Japon S, Luciani A, Leterrier Y, Manson JA (2001) Molecular characterization and rheological properties of modified poly (ethylene terephthalate) obtained by reactive extrusion. Polym Eng Sci 41:1299–1309CrossRefGoogle Scholar
  35. 35.
    Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New YorkGoogle Scholar
  36. 36.
    Dealy JM, Wissbrun KF (1990) Melt rheology and its role in plastics processing. Van Nostrand Reinhold, New YorkGoogle Scholar
  37. 37.
    Xanthos M, Yilmazer U, Dey SK, Quintans J (2000) Melt viscoelasticity of polyethylene terephthalate resins for low density extrusion foaming. Polym Eng Sci 40:554–566CrossRefGoogle Scholar
  38. 38.
    Trinkle S, Friedrich C (2001) Van Gurp-Palmen-plot: a way to characterize polydispersity of linear polymers. Rheol Acta 40:322–328CrossRefGoogle Scholar
  39. 39.
    Trinkle S, Walter P, Friedrich C (2002) Van Gurp-Palmen plot II: classification of long chain branched polymers by their topology. Rheol Acta 41:103–113CrossRefGoogle Scholar
  40. 40.
    Yang Z, Xin Ch, Mughal W, Li X, He Y (2017) High-melt-elasticity poly(ethylene terephthalate) produced by reactive extrusion with a multi-functional epoxide for foaming. J Appl Polym Sci 135:45805–45814CrossRefGoogle Scholar
  41. 41.
    Chanda M, Roy SK (2006) Plastics technology handbook, 2d. edn. CRC Press, Boca RatonGoogle Scholar
  42. 42.
    Peacock AJ (2000) Handbook of polyethylene: structures: properties, and applications. Marcel Dekker, Inc., New YorkCrossRefGoogle Scholar
  43. 43.
    Pegoretti A, Penati A (2004) Recycled poly(ethylene terephthalate) and its short glass fibres composites: effect of hygrothermal aging on the thermo-mechanical behavior. Polymer 45:7995–8004CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Juan José Benvenuta Tapia
    • 1
  • Martin Hernández Valdez
    • 2
  • Jorge Cerna Cortez
    • 3
  • Víctor Martin Díaz García
    • 2
  • Heber Landeros Barrios
    • 2
  1. 1.Departamento de Ingeniería Química, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  2. 2.Departamento de Desarrollo de Productos y ProcesosResirene S.A.XicohtzincoMexico
  3. 3.Facultad de Ciencias QuímicasBenemérita Universidad Autónoma de PueblaPueblaMexico

Personalised recommendations