Journal of Polymers and the Environment

, Volume 26, Issue 11, pp 4258–4270 | Cite as

Alkoxy-silyl Induced Agglomeration: A New Approach for the Sustainable Removal of Microplastic from Aquatic Systems

  • Adrian Frank Herbort
  • Michael Toni Sturm
  • Simone Fiedler
  • Golnar Abkai
  • Katrin SchuhenEmail author
Original Paper


The substance class of inert organic-chemical stressors (IOCS) describes organic-chemical (macro-) molecules, which demonstrate a high level of persistence upon entry in the ecosystem, and whose degradation is limited. These synthetically produced organic-chemical macromolecules, which are often derived from the polymerization of different monomers, are, in the form of plastics, indispensable in the everyday world. They enter the environmental compartments and cause great damage due to primary (industry, cosmetic, washing of textile), and secondary (degradation) entry. If these particles get into aquatic systems, this has fatal consequences for the ecosystem such as the death of marine animals, or bioaccumulation. Wastewater treatment plants are reaching their limits and require innovative ideas for the sustainable removal of microplastic. This article examines a new approach to the removal of polymers from aquatic systems (lab scale) by using sol–gel induced agglomeration reactions to form larger particle agglomerates. These enlarged agglomerates can be separated much more easily from the wastewater, since they float on the water surface. Separation systems, e.g. sand trap can easily be used. A further advantage is that the agglomeration can be carried out completely independently of the type, size, and amount of the trace substance concentration as well as of the external influences (pH value, temperature, pressure). Thus, this new type of particle separation can not only be used in sewage treatment plants, but can also be transferred to decentralized systems (e.g. implementation in industrial processes).

Graphical Abstract


Microplastics Wastewater treatment Anthropogenic stressors Sol–gel process Alkoxy-silyl substituted precursor 



The research projects of Wasser 3.0 ( are conducted by means of the financial support by the German Federal Ministry for Economic Affairs and Energy (KF3147102RH4) through the provision of ZIM (Central Innovation Program for SME) project funds. The enterprise abcr GmbH ( from Karlsruhe (GERMANY) is directly involved in the project as an industrial partner for the material science scale-up. IR spectra are provided by SAS Hagmann ( from Horb am Neckar (GERMANY). NMR spectra are additionally provided by University of Heidelberg’s research group of Prof. Dr. Markus Enders (GERMANY).


  1. 1.
    PlasticsEurope (2013) Plastics—the Facts 2013—An analysis of European latest plastics production, demand and waste data. Accessed 02 Mar 2017
  2. 2.
    PlasticsEurope (2016) Plastics—the Facts 2016—An analysis of European plastics production, demand and waste data. Accessed 02 Mar 2017
  3. 3.
    Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62(8):1596–1605. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Förtsch G, Meinholz H (2014) Handbuch betrieblicher Gewässerschutz. Springer, WiesbadenCrossRefGoogle Scholar
  5. 5.
    Heinonen M, Talvitie J (2014) Preliminary study on synthetic microfibers and particles at a municipal waste water treatment plant. Baltic Marine Environment Protection Commission, HelsinkiGoogle Scholar
  6. 6.
    Magnusson K, Nóren F (2014) Screening of microplastic particles in and downstream a wastewater treatment plant. IVL Swedish Environmental Research Institute, StockholmGoogle Scholar
  7. 7.
    Murphy F, Ewins C, Carbonnier F et al (2016) Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ Sci Technol 50(11):5800–5808. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mintenig SM, Int-Veen I, Loder MGJ et al (2016) Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Res 108:365–372. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Browne MA, Crump P, Niven SJ et al (2011) Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ Sci Technol 45(21):9175–9179. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Estahbanati S, Fahrenfeld NL (2016) Influence of wastewater treatment plant discharges on microplastic concentrations in surface water. Chemosphere 162:277–284. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Rochman CM, Kross SM, Armstrong JB et al (2015) Scientific evidence supports a ban on microbeads. Environ Sci Technol 49(18):10759–10761. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    MSFD GES Technical Subgroup on Marine Litter (2011) Marine litter: Technical recommendations for the implementation of MSFD requirements. EUR (Luxembourg. Online), vol 25009. Publications Office, LuxembourgGoogle Scholar
  13. 13.
    Commission European (2011) Commission recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU). Off J Eur Union L275:38–40Google Scholar
  14. 14.
    Duis K, Coors A (2016) Microplastics in the aquatic and terrestrial environment: Sources (with a specific focus on personal care products), fate and effects. Environ Sci Eur 28(1):1240. CrossRefGoogle Scholar
  15. 15.
    Dudgeon D, Arthington AH, Gessner MO et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev Camb Philos Soc 81(2):163–182. CrossRefGoogle Scholar
  16. 16.
    Wagner M, Scherer C, Alvarez-Muñoz D et al (2014) Microplastics in freshwater ecosystems: what we know and what we need to know. Environ Sci Eur 26(1):1977. CrossRefGoogle Scholar
  17. 17.
    Wang W, Ndungu AW, Li Z et al (2016) Microplastics pollution in inland freshwaters of China: a case study in urban surface waters of Wuhan, China. Sci Total Environ. CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Eerkes-Medrano D, Thompson RC, Aldridge DC (2015) Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res 75:63–82. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Driedger AG, Dürr HH, Mitchell K et al (2015) Plastic debris in the Laurentian Great Lakes: a review. J Great Lakes Res 41(1):9–19. CrossRefGoogle Scholar
  20. 20.
    Su L, Xue Y, Li L et al (2016) Microplastics in Taihu Lake, China. Environ Pollut 216:711–719. CrossRefGoogle Scholar
  21. 21.
    Zhang K, Su J, Xiong X et al (2016) Microplastic pollution of lakeshore sediments from remote lakes in Tibet plateau, China. Environ Pollut. CrossRefGoogle Scholar
  22. 22.
    Free CM, Jensen OP, Mason SA et al (2014) High-levels of microplastic pollution in a large, remote, mountain lake. Mar Pollut Bull 85(1):156–163. CrossRefGoogle Scholar
  23. 23.
    Horton AA, Svendsen C, Williams RJ et al (2016) Large microplastic particles in sediments of tributaries of the River Thames, UK—Abundance, sources and methods for effective quantification. Mar Pollut Bull. CrossRefGoogle Scholar
  24. 24.
    Fischer EK, Paglialonga L, Czech E et al (2016) Microplastic pollution in lakes and lake shoreline sediments—a case study on Lake Bolsena and Lake Chiusi (central Italy). Environ Pollut 213:648–657. CrossRefGoogle Scholar
  25. 25.
    McCormick A, Hoellein TJ, Mason SA et al (2014) Microplastic is an abundant and distinct microbial habitat in an urban river. Environ Sci Technol 48(20):11863–11871. CrossRefGoogle Scholar
  26. 26.
    Castañeda RA, Avlijas S, Simard MA et al (2014) Microplastic pollution in St. Lawrence River sediments. Can J Fish Aquat Sci 71(12):1767–1771. CrossRefGoogle Scholar
  27. 27.
    Mani T, Hauk A, Walter U et al (2015) Microplastics profile along the Rhine River. Sci Rep 5:17988. CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Lechner A, Keckeis H, Lumesberger-Loisl F et al (2014) The Danube so colourful: a potpourri of plastic litter outnumbers fish larvae in Europe’s second largest river. Environ Pollut 188:177–181. CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Zbyszewski M, Corcoran PL (2011) Distribution and degradation of fresh water plastic particles along the beaches of Lake Huron, Canada. Water Air Soil Pollut 220(1–4):365–372. CrossRefGoogle Scholar
  30. 30.
    Imhof HK, Ivleva NP, Schmid J et al (2013) Contamination of beach sediments of a subalpine lake with microplastic particles. Curr Biol 23(19):R867–R868. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    McGoran A, Clark P, Morritt D (2016) Presence of microplastic in the digestive tracts of European flounder, Platichthys flesus, and European smelt, Osmerus eperlanus, from the River Thames. Environ Pollut 220(Pt A):744–751. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lusher AL, McHugh M, Thompson RC (2013) Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Mar Pollut Bull 67(1–2):94–99. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Napper IE, Bakir A, Rowland SJ et al (2015) Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics. Mar Pollut Bull 99(1–2):178–185. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Miklos D, Obermaier N, Jekel M (2016) Mikroplastik: Entwicklung eines Umweltbewertungskonzepts: Erste Überlegungen zur Relevanz von synthetischen Polymeren in der Umwelt. Umweltbundesamt, Dessau-RoßlauGoogle Scholar
  35. 35.
    Sherrington C, Darrah C, Hann S et al (2016) Study to support the development of measures to combat a range of marine litter sources. Report for European Commission DG EnvironmentGoogle Scholar
  36. 36.
    Napper IE, Thompson RC (2016) Release of synthetic microplastic plastic fibres from domestic washing machines: effects of fabric type and washing conditions. Mar Pollut Bull. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Mintenig S, Int-Veen I, Löder M et al (2014) Mikroplastik in ausgewählten Kläranlagen des Oldenburgisch-Ostfriesischen Wasserverbandes (OOWV) in Niedersachsen. Alfred-Wegener-Institut, Probenanalyse mittels Mikro-FTIR Spektroskopie. Final report for the OOWV Helgoland.
  38. 38.
    Gregory MR, Ryan PG (1997) Pelagic plastics and other seaborne persistent synthetic debris: a review of southern hemisphere perspectives. In: Alexander DE, Coe JM, Rogers DB (eds) Marine debris. Springer, New York, pp 49–66CrossRefGoogle Scholar
  39. 39.
    Lechner A, Ramler D (2015) The discharge of certain amounts of industrial microplastic from a production plant into the River Danube is permitted by the Austrian legislation. Environ Pollut 200:159–160. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Herbort AF, Sturm MT, Hiller C et al (2017) Nano- und Mikroplastik – Braucht es eine komplizierte Einzelstoffdetektion bei der Gewässeranalytik? Umdenken mit dem Wasser 3.0 – PEI?! GIT Labor-Fachzeitschrift (03/2017): 32–35Google Scholar
  41. 41.
    Ternes T, Joss A (2006) Human pharmaceuticals, hormones and fragrances: the challenge of micropollutants in urban water management. IWA Publishing, LondonGoogle Scholar
  42. 42.
    Schwarzenbach RP, Escher BI, Fenner K et al (2006) The challenge of micropollutants in aquatic systems. Science 313(5790):1072–1077. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Nordic Water (2016) Microplastik—eine unsichtbare Gefahr. Accessed 06 Dec 2016
  44. 44.
    Herbort AF, Schuhen K (2017) A concept for the removal of microplastics from the marine environment with innovative host-guest relationships. Environ Sci Pollut Res Int 24(12):11061–11065. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Melnyk A, Namieśnik J, Wolska L (2015) Theory and recent applications of coacervate-based extraction techniques. TrAC Trends Anal Chem 71:282–292. CrossRefGoogle Scholar
  46. 46.
    Samaddar P, Sen K (2014) Cloud point extraction: A sustainable method of elemental preconcentration and speciation. J Ind Eng Chem 20(4):1209–1219. CrossRefGoogle Scholar
  47. 47.
    Mukherjee P, Padhan SK, Dash S et al (2011) Clouding behaviour in surfactant systems. Adv Colloid Interface Sci 162(1–2):59–79. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Ebelmen I (1846) Untersuchungen über die Verbindungen der Borsäure und Kieselsäure mit Aether. Ann Chem Pharm 57(3):319–355. CrossRefGoogle Scholar
  49. 49.
    Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, BostonGoogle Scholar
  50. 50.
    Lu Y (2006) Herstellung mesoporöser Materialien mithilfe von Tensid-Templaten: Von anorganischen über hybride zu organischen Strukturen. Angew Chem 118(46):7826–7829. CrossRefGoogle Scholar
  51. 51.
    Moreau JJE, Pichon BP, Wong Chi M, Man et al (2004) A better understanding of the self-structuration of bridged silsesquioxanes. Angew Chem 116(2):205–208. CrossRefGoogle Scholar
  52. 52.
    Uhlmann DR, Zelinski BJJ, Wnek GE (1984) Better ceramics through chemistry. Materials Research Society symposia proceedings, ISSN 0272–9172, vol 32. Materials Research Society, New YorkGoogle Scholar
  53. 53.
    Zamboulis A, Moitra N, Moreau JJE et al (2010) Hybrid materials: versatile matrices for supporting homogeneous catalysts. J Mater Chem 20(42):9322. CrossRefGoogle Scholar
  54. 54.
    Vallet-Regi M, Colilla M, Gonzalez B (2011) Medical applications of organic-inorganic hybrid materials within the field of silica-based bioceramics. Chem Soc Rev 40(2):596–607. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Nicole L, Boissiere C, Grosso D et al (2004) Advanced selective optical sensors based on periodically organized mesoporous hybrid silica thin films. Chem Commun (Camb) 20:2312–2313. CrossRefGoogle Scholar
  56. 56.
    Burns A, Ow H, Wiesner U (2006) Fluorescent core-shell silica nanoparticles: towards “Lab on a Particle” architectures for nanobiotechnology. Chem Soc Rev 35(11):1028–1042. CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Corriu R, Leclercq D (1996) Neue Entwicklungen der Molekülchemie für Sol-Gel-Prozesse. Angew Chem 108(13–14):1524–1540. CrossRefGoogle Scholar
  58. 58.
    Moreau JJE, Vellutini L, Man WC, Michel et al (2003) Shape-controlled bridged silsesquioxanes: hollow tubes and spheres. Chemistry 9(7):1594–1599. CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Köhn RD, Haufe M, Kociok-Köhn G et al (1997) The chemistry of 1,3,5-triazacyclohexane complexes synthesis and characterization of the cobalt(II) methoxide core {Co3(OMe)4}2+. Inorg Chem 36:6064–6069. CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Moreau JJE, Pichon BP, Man WC (2005) Lamellar phenylene-bridged hybrid silicones. Compos Interfaces 11(8–9):609–616. CrossRefGoogle Scholar
  61. 61.
    Schuhen K (2016) Hybridkieselsäurematerial, insbesondere zur Fixierung anthropogener Verunreinigungen aus einem aquatischen Umfeld WO2016166219 (A1)(WO2016166219 (A1))Google Scholar
  62. 62.
    Izmaylov BA, Vasnev VA, Peregudov AS et al (2017) Synthesis of novel oligocarboranesiloxanes. J Organomet Chem 844:16–29. CrossRefGoogle Scholar
  63. 63.
    Tu Y, Peng F, Adawy A et al (2015) Mimicking the cell: bio-inspired functions of supramolecular assemblies. Chem Rev. CrossRefGoogle Scholar
  64. 64.
    Liu L, Guo Q-X (2002) The driving forces in the inclusion complexation of cyclodextrins. J Incl Phenom Macrocycl Chem 42(1/2):1–14. CrossRefGoogle Scholar
  65. 65.
    Abraham MH (1982) Free energies, enthalpies, and entropies of solution of gaseous nonpolar nonelectrolytes in water and nonaqueous solvents. The hydrophobic effect. J Am Chem Soc 104(8):2085–2094. CrossRefGoogle Scholar
  66. 66.
    Buchwald P (2002) Complexation thermodynamics of cyclodextrins in the framework of a molecular size-based model for nonassociative organic liquids that includes a modified hydration-shell hydrogen-bond model for water. J Phys Chem B 106(27):6864–6870. CrossRefGoogle Scholar
  67. 67.
    Moretto H-H, Schulze M, Wagner G (2000) Ullmann’s encyclopedia of industrial chemistry. Wiley, WeinheimGoogle Scholar
  68. 68.
    Tahir H, Hindsgaul O (2000) Regio- and chemoselective alkylation of l-ascorbic acid under Mitsunobu conditions. J Org Chem 65:911–913.; CrossRefGoogle Scholar
  69. 69.
    Köhn RD, Haufe M, Mihan S et al (2000) Triazacyclohexane complexes of chromium as highly active homogeneous model systems for the Phillips catalyst. Chem Commun 19:1927–1928. CrossRefGoogle Scholar
  70. 70.
    Ticona Product Tool (2007) Material data sheet. Accessed 21 Apr 2017

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Environmental Sciences LandauUniversity of Koblenz – LandauLandauGermany

Personalised recommendations