Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 9, pp 3957–3966 | Cite as

Fabrication of Natural Fiber Composites Consisting of Osage Orange Seed flour Reinforced with Non-woven Hemp Mats

  • Brent Tisserat
Original Paper
  • 60 Downloads

Abstract

Natural fiber composites (NFC) were fabricated using a matrix consisting of an aqueous slurry of Osage orange (Maclura pomifera (Raf.) Schneid. family Moraceae) seed meal (OOSM) (50, 75 or 100 g L− 1) reinforced with non-woven hemp mats (450, 650, 800, 1000, 1200, or 1350 g m− 2 surface densities). OOSM behaves as a thermoset adhesive/resin similar to soy flours. Non-woven mats of 7.6 cm W × 17.8 cm L of various surface densities were soaked in aqueous slurries for 30 min under vacuum and then directly hot pressed at 185 °C and 4.3 MPa for 4:30 min. NFCs matrix:reinforcement percentages varied depending on the surface density of the hemp mat employed. NFCs were evaluated for their mechanical, physical and dimensional stability properties. The OOSM slurry matrix was found to be as effective as matrices generated from soy flour or soy protein isolate slurries. The influence of various temperatures for processing was also evaluated.

Keywords

Bio-based composites Flexural properties Tensile properties Soy flour Soy protein isolate Surface roughness Thermoset 

Notes

Acknowledgements

The author is grateful for the Osage orange seeds by Dr. Alan Gravett of Hedgeapple Biotech, Bloomington, IL and technical assistance provided by Nicholas Montesdeoca and David Kukla of the USDA-ARS-NCAUR. Mention of a trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. USDA is an equal opportunity provider and employer.

Compliance with Ethical Standards

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

  1. 1.
    Jauhari N, Mishra R, Thakur H (2015) Mat Today Proc 2:2868CrossRefGoogle Scholar
  2. 2.
    Yu ZC, Alcock M, Rothwell E, McKay S (2009) Proc 12th ICCM, Jul 27–31, 2009Google Scholar
  3. 3.
    Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Prog Polym Sci 37:1552CrossRefGoogle Scholar
  4. 4.
    Scarponi C, Schiavoni E, Sánchez-Sácz S, Barbero E, Sarasini F (2012) J Biobased Mat Bioen 6:361CrossRefGoogle Scholar
  5. 5.
    Mohammed L, Ansari MNM, Pua G, Jawaid M, Islam MS (2015) Int J Polym Sci 2015:243947CrossRefGoogle Scholar
  6. 6.
    Al-Oqla FM, Sapuan SM, Anwer T, Jawaid M, Hoque ME (2015) Synth Met 206:42CrossRefGoogle Scholar
  7. 7.
    Pickering KL, Aruan Efendy MG, Le TM (2016) Comp Part A 83:98CrossRefGoogle Scholar
  8. 8.
    Westman MP, Fifield LS, Simmons KL, Laddha SG, Kafentzis T (2010) Natural fiber composites: a review. USDE, PNNL-19220, Mar 2010Google Scholar
  9. 9.
    Ratim S, Bonnia NN, Surip SN (2012) 2nd APCTP Work Adv Mat Nanotech. AIP Conf Proc 1455:131Google Scholar
  10. 10.
    Martin N, Davis P, Baley C (2016) Ind Crop Prod 83:194CrossRefGoogle Scholar
  11. 11.
    Saenghirunwattana P, Noomhorm A, Rungsardthong V (2014) Ind Crop Prod 60:144CrossRefGoogle Scholar
  12. 12.
    Chabba S, Matthews GF, Netravali AN (2005) Roy Soc Chem 7:576Google Scholar
  13. 13.
    Drzal LT, Mohanty AK, Liu W, Thayer K, Misra M (2009) US Patent No:US 7576147:B2Google Scholar
  14. 14.
    Kelley MD, Manna J (2009) US Patent No:US 2009/0232953 AGoogle Scholar
  15. 15.
    Iman M, Banja KK, Maji TK (2013) Ind Eng Chem Res 52:6969CrossRefGoogle Scholar
  16. 16.
    Sreekumar PA, Thomas SP, Saiter JM, Kuruvilla J, Unnikrishnan G, Thomas S (2009) Comp Part A 40:1777CrossRefGoogle Scholar
  17. 17.
    Boontima B, Noomhorm A, Puttanlek C, Uttapap D, Rungsardthong V (2015) J Polym Environ 23:97CrossRefGoogle Scholar
  18. 18.
    Deepmala C, Singh VK, Chauhan S, Jain N (2017) RRJOMS 5:66Google Scholar
  19. 19.
    Coolidge T, Mock C, Valle E (2016) Polymers 8:394CrossRefGoogle Scholar
  20. 20.
    Frihart CR, Hunt CG, Birkeland MJ (2014) In: Recent Adv Adh Sci Technol CRC Press, Boca RatonGoogle Scholar
  21. 21.
  22. 22.
  23. 23.
    Moser BR, Eller FJ, Tisserat BH, Gravett A (2011) Energy Fuels 25:1869CrossRefGoogle Scholar
  24. 24.
    Tisserat B, Reifschneider L, Gravett A, Peterson SC (2017) Bioresources 12:7898Google Scholar
  25. 25.
    Saloua F, Eddine NE, Hedi Z (2009) Ind Crop Prod 29:1CrossRefGoogle Scholar
  26. 26.
  27. 27.
    Realhemp (2018) Indiana Hemp Ind Assoc http://www.realhemp.com/hemp-industries/hemp-biocomposites/
  28. 28.
    He W, Ma W, Young T, Teo WE, Ramakrishna S (2005) Biomat 26:7606CrossRefGoogle Scholar
  29. 29.
    He Z, Chapital DC, Cheng HN (2016) J Appl Polym Sci 133:43637Google Scholar
  30. 30.
    Tabarsa T, Ashori A, Gholamzadeh M (2011) Comp Part B 42:1330CrossRefGoogle Scholar
  31. 31.
    Ayrilmis N (2011) Bioresources 6:3178Google Scholar
  32. 32.
    Akgül M, Korkut S, Çamlibel O, Candan Z, Akbulut T (2012) Maderas Cien Techol 14:185CrossRefGoogle Scholar
  33. 33.
    Salasinska K, Ryszkowska J (2012) ECCM15-15th Venice, Italy, 24–28 June, 2012Google Scholar
  34. 34.
    Mo X, Sun XS (2013) Adhes Sci Technol 27:2014CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply  2018

Authors and Affiliations

  1. 1.Functional Foods Research Unit, National Center for Agricultural Utilization Research, Agricultural Research ServiceUnited States Department of AgriculturePeoriaUSA

Personalised recommendations