Journal of Polymers and the Environment

, Volume 26, Issue 9, pp 3848–3857 | Cite as

Biodegradation of Poly(lactic acid) in Soil Microcosms at Ambient Temperature: Evaluation of Natural Attenuation, Bio-augmentation and Bio-stimulation

  • Sadia Mehmood Satti
  • Aamer Ali ShahEmail author
  • Terence L. Marsh
  • Rafael AurasEmail author
Original Paper


Biodegradation of poly(lactic acid)—PLA—films in soil matrix under mesophilic conditions was evaluated using natural attenuation, bio-augmentation and bio-stimulation. Rate of mineralization was found to be very slow as 10% in soil at 150 days and there was no evidence of abiotic degradation of the polymer at 30 °C. Bioaugmentation with previously isolated PLA-degrading bacteria, Sphingobacterium sp. strain S2 and Pseudomonas aeruginosa strain S3 and stimulating the native microbial community with 0.2% sodium lactate significantly enhanced the mineralization rate of PLA to 22 and 24%, respectively at 150 days. No adverse effect on soil health as well as its nitrification potential was observed in response to biodegradation and bioremediation strategies. Bio-stimulation and bio-augmentation enhanced more the rate of mineralization of PLA in soil than the natural rate of degradation, and both strategies have no ecotoxic effect on soil microbial population; hence, they can be considered as potential routes to enhance the degradation of PLA at ambient temperature.


PLA Polylactide Composting Soil ecotoxicity Nitrification 



The authors thank to the Higher Education Commission of Pakistan (HEC) and the Government of Pakistan for providing a fellowship for S.S. through the international research support initiative program (IRSIP). The Plant Nutrient Laboratory at Michigan State University (East Lansing, MI, USA) for performing soil analysis and to the School of Packaging at Michigan State University (East Lansing, MI, USA) and fellow students for their support during the test.


  1. 1.
    Altaf M, Venkateshwar M, Srijana M, Reddy G (2007) An economic approach for L-(+) lactic acid fermentation by Lactobacillus amylophilus GV6 using inexpensive carbon and nitrogen sources. J Appl Microbiol 103:372–380CrossRefPubMedGoogle Scholar
  2. 2.
    John RP, Nampoothiri KM, Pandey A (2007) Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol 74:524–534CrossRefPubMedGoogle Scholar
  3. 3.
    Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501CrossRefGoogle Scholar
  4. 4.
    Ouchi T, Ohya Y (2004) Design of lactide copolymers as biomaterials. J Polym Sci A 42:453–462CrossRefGoogle Scholar
  5. 5.
    Wang R, Wang S, Zhang Y, Wan C, Ma P (2009) Toughening modification of PLLA/PBS blends via in situ compatibilization. Polym Eng Sci 49:26–33CrossRefGoogle Scholar
  6. 6.
    Li F-J, Tan L-C, Zhang S-D, Zhu B (2016) Compatibility, steady and dynamic rheological behaviors of polylactide/poly(ethylene glycol) blends. J Appl Polym Sci. CrossRefGoogle Scholar
  7. 7.
    Ljungberg N, Colombini D, Wesslén B (2005) Plasticization of poly(lactic acid) with oligomeric malonate esteramides: dynamic mechanical and thermal film properties. J Appl Polym Sci 96:992–1002CrossRefGoogle Scholar
  8. 8.
    Zhou L, Zhao G, Jiang W (2016) Mechanical properties of biodegradable polylactide/poly(ether-block-amide)/thermoplastic starch blends: effect of the crosslinking of starch. J Appl Polym Sci. CrossRefGoogle Scholar
  9. 9.
    Krause MJ, Townsend TG (2016) Life-cycle assumptions of landfilled polylactic acid underpredict methane generation. Environ Sci Technol Lett 3:166–169CrossRefGoogle Scholar
  10. 10.
    Hottle TA, Agüero ML, Bilec MM, Landis AE (2016) Alkaline amendment for the enhancement of compost degradation for polylactic acid biopolymer products. Compost Sci Util 24:159–173CrossRefGoogle Scholar
  11. 11.
    Song JH, Murphy RJ, Narayan R, Davies GBH (2009) Biodegradable and compostable alternatives to conventional plastics. Philos Trans R Soc B 364:2127CrossRefGoogle Scholar
  12. 12.
    Karamanlioglu M, Preziosi R, Robson GD (2017) Abiotic and biotic environmental degradation of the bioplastic polymer poly(lactic acid): a review. Polym Degrad Stab 137:122–130CrossRefGoogle Scholar
  13. 13.
    Sangwan P, Wu DY (2008) New insights into polylactide biodegradation from molecular ecological techniques. Macromol Biosci 8:304–315CrossRefPubMedGoogle Scholar
  14. 14.
    Csikós Á, Faludi G, Domján A, Renner K, Móczó J, Pukánszky B (2015) Modification of interfacial adhesion with a functionalized polymer in PLA/wood composites. Eur Polym J 68:592–600CrossRefGoogle Scholar
  15. 15.
    Lipsa R, Tudorachi N, Darie-Nita RN, Oprica L, Vasile C, Chiriac A (2016) Biodegradation of poly(lactic acid) and some of its based systems with Trichoderma viride. Int J Biol Macromol 88:515–526CrossRefPubMedGoogle Scholar
  16. 16.
    Itävaara M, Karjomaa S, Selin J-F (2002) Biodegradation of polylactide in aerobic and anaerobic thermophilic conditions. Chemosphere 46:879–885CrossRefPubMedGoogle Scholar
  17. 17.
    Vink ET, Rabago KR, Glassner DA, Springs B, O’Connor RP, Kolstad J et al (2004) The sustainability of NatureWorks polylactide polymers and Ingeo polylactide fibers: an update of the future. Macromol Biosci 4:551–564CrossRefPubMedGoogle Scholar
  18. 18.
    Lunt J (1998) Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stab 59:145–152CrossRefGoogle Scholar
  19. 19.
    Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12:1841–1846CrossRefGoogle Scholar
  20. 20.
    Castro-Aguirre E, Auras R, Selke S, Rubino M, Marsh T (2017) Insights on the aerobic biodegradation of polymers by analysis of evolved carbon dioxide in simulated composting conditions. Polym Degrad Stab 137:251–271CrossRefGoogle Scholar
  21. 21.
    Castro-Aguirre E, Iñiguez-Franco F, Samsudin H, Fang X, Auras R (2017) Poly(lactic acid)—mass production, processing, industrial applications, and end of life. Adv Drug Deliv Rev. CrossRefGoogle Scholar
  22. 22.
    Day M, Shaw K, Cooney D, Watts J, Harrigan B (1997) Degradable polymers: the role of the degradation environment. J Environ Polym Degrad 5:137–151Google Scholar
  23. 23.
    Södergård A, Selin J-F, Näsman JH (1996) Hydrolytic degradation of peroxide modified poly(L-lactide). Polym Degrad Stab 51:351–359CrossRefGoogle Scholar
  24. 24.
    Siparsky GL, Voorhees KJ, Dorgan JR, Schilling K (1997) Water transport in polylactic acid (PLA), PLA/polycaprolactone copolymers, and PLA/polyethylene glycol blends. J Environ Polym Degrad 5:125–136Google Scholar
  25. 25.
    Apinya T, Sombatsompop N, Prapagdee B (2015) Selection of a Pseudonocardia sp RM423 that accelerates the biodegradation of poly(lactic) acid in submerged cultures and in soil microcosms. Int Biodeterior Biodegrad 99:23–30CrossRefGoogle Scholar
  26. 26.
    Saadi Z, Rasmont A, Cesar G, Bewa H, Benguigui L (2012) Fungal degradation of poly(l-lactide) in soil and in compost. J Polym Environ 20:273–282CrossRefGoogle Scholar
  27. 27.
    Jarerat A, Tokiwa Y, Tanaka H (2004) Microbial poly(L-lactide)-degrading enzyme Induced by amino acids, peptides, and poly(L-amino acids). J Polym Environ 12:139–146CrossRefGoogle Scholar
  28. 28.
    Tokiwa Y, Calabia BP (2006) Biodegradability and biodegradation of poly(lactide). Appl Microbiol Biotechnol 72:244–251CrossRefPubMedGoogle Scholar
  29. 29.
    EN17033-2018E (2018) Plastics—Biodegradation mulch films for use in agriculture and horticulture—Requirements and test methods. European Committee for Standardization, p 37Google Scholar
  30. 30.
    UNI10780-98 (1998) Compost–Classificazione, Requisiti e Modalità diImpiegoGoogle Scholar
  31. 31.
    ISO11268-1 (2012) Soil quality–effects of pollutants on earthworms—part 1: determination of acute toxicity to Eiseniafetida/Eisenia AndreiGoogle Scholar
  32. 32.
    ISO6341-12 (2012) Water quality–determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea)—acute toxicity testGoogle Scholar
  33. 33.
    NFT90-375 (1998) QualitédeL’eau—Détermination de laToxicité Chronique des Eaux par Inhibition de laCroissance de L’algue D’eau Douce Pseudokirchneriella subcapitata (Selenastrum capricornutum)Google Scholar
  34. 34.
    Briassoulis D, Degli Innocenti F (2017) Standards for soil biodegradable plastics. In: Malinconico M (ed) Soil degradable bioplastics for a sustainable modern agriculture. Springer, Berlin, pp 139–168CrossRefGoogle Scholar
  35. 35.
    Pannu MW, O’Connor GA, Toor GS (2012) Toxicity and bioaccumulation of biosolids-borne triclosan in terrestrial organisms. Environ Toxicol Chem 31:646–653CrossRefPubMedGoogle Scholar
  36. 36.
    Ruyters S, Salaets P, Oorts K, Smolders E (2013) Copper toxicity in soils under established vineyards in Europe: a survey. Sci Total Environ 443:470–477CrossRefPubMedGoogle Scholar
  37. 37.
    Reynolds L, Blok J, de Morsier A, Gerike P, Wellens H, Bontinck WJ (1987) Evaluation of the toxicity of substances to be assessed for biodegradability. Chemosphere 16:2259–2277CrossRefGoogle Scholar
  38. 38.
    Ren S, Frymier PD (2003) Use of multidimensional scaling in the selection of wastewater toxicity test battery components. Water Res 37:1655–1661CrossRefPubMedGoogle Scholar
  39. 39.
    Ardisson GB, Tosin M, Barbale M, Degli-Innocenti F (2014) Biodegradation of plastics in soil and effects on nitrification activity. A laboratory approach. Front Microbiol 5:710Google Scholar
  40. 40.
    Satti SM, Shah AA, Auras R, Marsh TL (2017) Isolation and characterization of bacteria capable of degrading poly(lactic acid) at ambient temperature. Polym Degrad Stab 144:392–400CrossRefGoogle Scholar
  41. 41.
    Dee S, Deen J, Rossow K, Weise C, Eliason R, Otake S et al (2003) Mechanical transmission of porcine reproductive and respiratory syndrome virus throughout a coordinated sequence of events during warm weather. Can J Vet Res 67:12–19PubMedPubMedCentralGoogle Scholar
  42. 42.
    Sáez-Plaza P, Navas MJ, Wybraniec S, Michałowski T, Asuero AG (2013) An overview of the Kjeldahl Method of nitrogen determination. Part II. sample preparation, working scale, instrumental finish, and quality control. Crit Rev Anal Chem 43:224–272CrossRefGoogle Scholar
  43. 43.
    Pietrasiak N, Johansen JR, LaDoux T, Graham RC (2011) Comparison of disturbance impacts to and spatial distribution of biological soil crusts in the Little San Bernardino Mountains of Joshua Tree National Park, California. Western North American Naturalist 71:539–552CrossRefGoogle Scholar
  44. 44.
    Satti SM (2017) KY432687.1. Sphingobacterium sp. strain S2 16S ribosomal RNA gene, partial sequence. NCBI, GenBank. NCBIGoogle Scholar
  45. 45.
    Satti SM (2017) KY432688.1—Pseudomonas aeruginosa strain S3 16S ribosomal RNA gene, partial sequence. NCBI, GenBank. NCBIGoogle Scholar
  46. 46.
    Janssen PH, Yates PS, Grinton BE, Taylor PM, Sait M (2002) Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl Environ Microbiol 68:2391–2396CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    ASTM-D5988-03 (2003) Standard test method for determining aerobic biodegradation in soil of plastic materials or residual plastic materials after composting. ASTM InternationalGoogle Scholar
  48. 48.
    ISO14238 (2012) Soil quality—biological methods—determination of nitrogen mineralization and nitrification in soils and the influence of chemicals on these processesGoogle Scholar
  49. 49.
    Nelson DW (1983) Determination of ammonium in KCl extracts of soils by the salicylate method. Commun Soil Sci Plant Anal 14:1051–1062CrossRefGoogle Scholar
  50. 50.
    Huffman SA, Barbarick KA (1981) Soil nitrate analysis by cadmium reduction. Commun Soil Sci Plant Anal 12:79–89CrossRefGoogle Scholar
  51. 51.
    Pradhan R, Reddy M, Diebel W, Erickson L, Misra M, Mohanty A (2010) Comparative compostability and biodegradation studies of various components of green composites and their blends in simulated aerobic composting bioreactor. Int J Plast Technol 14:45–50CrossRefGoogle Scholar
  52. 52.
    Iovino R, Zullo R, Rao MA, Cassar L, Gianfreda L (2008) Biodegradation of poly(lactic acid)/starch/coir biocomposites under controlled composting conditions. Polym Degrad Stab 93:147–157CrossRefGoogle Scholar
  53. 53.
    Kale G, Auras R, Singh SP, Narayan R (2007) Biodegradability of polylactide bottles in real and simulated composting conditions. Polym Test 26:1049–1061CrossRefGoogle Scholar
  54. 54.
    Ghorpade VM, Gennadios A, Hanna MA (2001) Laboratory composting of extruded poly(lactic acid) sheets. Bioresour Technol 76:57–61CrossRefPubMedGoogle Scholar
  55. 55.
    Qi X, Ren Y, Wang X (2017) New advances in the biodegradation of Poly(lactic) acid. Int Biodeterior Biodegrad 117:215–223CrossRefGoogle Scholar
  56. 56.
    Ohkita T, Lee S-H (2006) Thermal degradation and biodegradability of poly (lactic acid)/corn starch biocomposites. J Appl Polym Sci 100:3009–3017CrossRefGoogle Scholar
  57. 57.
    Dommergues YR, Belser LW, Schmidt EL (1978) Limiting factors for microbial growth and activity in soil. In: Alexander M (ed) Advances in microbial ecology, vol 2. Springer, Boston, pp 49–104CrossRefGoogle Scholar
  58. 58.
    Simpanen S, Dahl M, Gerlach M, Mikkonen A, Malk V, Mikola J et al (2016) Biostimulation proved to be the most efficient method in the comparison of in situ soil remediation treatments after a simulated oil spill accident. Environ Sci Pollut Res 23:25024–25038CrossRefGoogle Scholar
  59. 59.
    Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37:1362–1375CrossRefPubMedGoogle Scholar
  60. 60.
    Wu X, Gent DB, Davis JL, Alshawabkeh AN (2012) Lactate injection by electric currents for bioremediation of tetrachloroethylene in clay. Electrochim Acta 86:157–163CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Chang BV, Shiung LC, Yuan SY (2002) Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil. Chemosphere 48:717–724CrossRefPubMedGoogle Scholar
  62. 62.
    Jarerat A, Tokiwa Y (2003) Poly(L-lactide) degradation by Saccharothrix waywayandensis. Biotech Lett 25:401–404CrossRefGoogle Scholar
  63. 63.
    Williams DF (1981) Enzymic hydrolysis of polylactic acid. Eng Med 10:5–7CrossRefGoogle Scholar
  64. 64.
    Jiang T, Gao C, Ma C, Xu P (2014) Microbial lactate utilization: enzymes, pathogenesis, and regulation. Trends Microbiol 22:589–599CrossRefPubMedGoogle Scholar
  65. 65.
    Gohil H, Ogram A, Thomas J (2014) Stimulation of anaerobic biodegradation of DDT and its metabolites in a muck soil: laboratory microcosm and mesocosm studies. Biodegradation 25:633–642CrossRefPubMedGoogle Scholar
  66. 66.
    Lyu S, Schley J, Loy B, Lind D, Hobot C, Sparer R et al (2007) Kinetics and time-temperature equivalence of polymer degradation. Biomacromolecules 8:2301–2310CrossRefPubMedGoogle Scholar
  67. 67.
    Kijchavengkul T, Auras R, Rubino M, Ngouajio M, Fernandez RT (2006) Development of an automatic laboratory-scale respirometric system to measure polymer biodegradability. Polym Test 25:1006–1016CrossRefGoogle Scholar
  68. 68.
    Iniguez-Franco F, Auras R, Burgess G, Holmes D, Fang XY, Rubino M et al (2016) Concurrent solvent induced crystallization and hydrolytic degradation of PLA by water-ethanol solutions. Polymer 99:315–323CrossRefGoogle Scholar
  69. 69.
    Fukushima K, Tabuani D, Dottori M, Armentano I, Kenny JM, Camino G (2011) Effect of temperature and nanoparticle type on hydrolytic degradation of poly(lactic acid) nanocomposites. Polym Degrad Stab 96:2120–2129CrossRefGoogle Scholar
  70. 70.
    Xia W, Zhang C, Zeng X, Feng Y, Weng J, Lin X et al (2011) Autotrophic growth of nitrifying community in an agricultural soil. ISME J 5:1226–1236CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Microbiology, Faculty of Biological SciencesQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingUSA
  3. 3.School of PackagingMichigan State UniversityEast LansingUSA

Personalised recommendations