Journal of Polymers and the Environment

, Volume 26, Issue 9, pp 3785–3801 | Cite as

Bio-Composites Based on Poly(lactic acid) Containing Mallow and Eucalyptus Surface Modified Natural Fibers

  • Rafael da Silva Araújo
  • Maria de Fátima Vieira MarquesEmail author
  • Priscila Ferreira de Oliveira
  • Claudinei Calado Rezende
Original Paper


In this work poly(lactic acid) (PLA) composites containing modified natural fillers obtained from physically and chemically treated mallow and eucalyptus fibers were prepared and characterized. The fibers were submitted to different alkaline and acid hydrolysis methods. The results showed that chemical treatment improved the thermal stability of the mallow fibers and reduced that of the eucalyptus fibers; however, there was a significant increase in the degree of crystallinity in both fibers. After the thermal and morphological analysis, the treated fibers were added to a commercial PLA matrix at 5 wt% content in a twin-screw Haake Minilab mini-extruder. First, the neat PLA was processed at 180 °C at 60, 120 and 180 rpm for 5 min to adapt the parameters to the material’s rheological characteristics. According to the results, the best conditions were obtained when processing at 120 rpm; subsequently, all of the composites were prepared using this speed. Then, the composites were characterized showing that the addition of fibers to the polymer matrix improved stiffness, which was more significant in the case of the PLA/eucalyptus fiber composites, where the treatment applied to the fibers decreased the fiber diameter and improved the surface adhesion.


Poly(lactic acid) Bio-composites Natural fiber Acid hydrolysis 



This work was supported by the Research Foundation of Rio de Janeiro (FAPERJ), the Brazilian agencies National Counsel of Technological and Scientific Development (CNPq) and Coordination for the Improvement of Higher Education Personnel (Capes, Brazil), and the European project FP7-PEOPLE-IRSES-2011-295262-VAIKUTUS. The authors specially thank the Institute of Polymers, Composites and Biopolymer, IPCB-CNR, Pozuolli, Italy, for the analyses.


  1. 1.
    Haque MM-U, Errico ME, Gentile G, Avella M, Pracella M (2012) Functionalization and compatibilization of poly(ε-caprolactone) composites with cellulose microfibres: morphology, thermal and mechanical properties. Macromol Mater Eng 297:985–993CrossRefGoogle Scholar
  2. 2.
    Cocca M, Avolio R, Gentile G, Di Pace E, Errico ME, Avella M (2015) Amorphized cellulose as filler in biocomposites based on poly(ε-caprolactone). Carbohydr Polym 118:170–182CrossRefPubMedGoogle Scholar
  3. 3.
    Avella M, Bogoeva-Gaceva G, Bužarovska A, Errico ME, Gentile G, Grozdanov A (2008) Poly(lactic acid)-based biocomposites reinforced with kenaf fibers. J Appl Polym Sci 108:3542–3551CrossRefGoogle Scholar
  4. 4.
    Avella M, Bogoeva-Gaceva G, Bužarovska A, Errico ME, Gentile G, Grozdanov A (2007) Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) based biocomposites reinforced with kenaf fibres. J Appl Polym Sci 104:3192–3200CrossRefGoogle Scholar
  5. 5.
    Avolio R, Graziano V, Pereira YD, Cocca M, Gentile G, Errico ME, Ambrogi V, Avella M (2015) Effect of cellulose structure and morphology on the properties of poly(butylene succinate-co-butylene adipate) biocomposites. Carbohydr Polym 133:408–420CrossRefPubMedGoogle Scholar
  6. 6.
    Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274CrossRefGoogle Scholar
  7. 7.
    Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33CrossRefGoogle Scholar
  8. 8.
    Eichhorn SJ, Davies GR (2006) Modelling the crystalline deformation of native and regenerated cellulose. Cellulose 13:291–307CrossRefGoogle Scholar
  9. 9.
    Pandey JK, Kumar AP, Misra M, Mohanty AK, Drzal LT, Singh RP (2005) Recent advances in biodegradable nanocomposites. J Nanosci Nanotechnol 5:497–526CrossRefPubMedGoogle Scholar
  10. 10.
    Azizi MAS, Chazeauc L, Alloina F, Cavailléc JY, Dufresned A, Sancheza JY (2005) POE-based nanocomposite polymer electrolytes reinforced with cellulose whiskers. Electrochim Acta 50:3897–3903CrossRefGoogle Scholar
  11. 11.
    Lee SH, Wang S, Teramoto Y (2008) Isothermal crystallization behavior of hybrid biocomposite consisting of regenerated cellulose fiber, clay, and poly(lactic acid). J Appl Poly Sci 108:870–875CrossRefGoogle Scholar
  12. 12.
    Lunt J (1998) Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stabil 49:145–152CrossRefGoogle Scholar
  13. 13.
    Almasia H, Ghanbarzadehb B, Dehghannyab J, Entezamic A, Asghar A (2015) Novel nanocomposites based on fatty acid modified cellulose nanofibers/poly(lactic acid): morphological and physical properties. Food Packaging Shelf Life 9:21–31CrossRefGoogle Scholar
  14. 14.
    Agrawala AK, Bhallaa R (2003) Advances in the production of poly(lactic acid) fibers. J Macromol Sci C 43:479–503CrossRefGoogle Scholar
  15. 15.
    Vanin M, Santana CC, Torriani IL, Privelic T, Eliana AR (2004) In vitro study of degradation of poly(b-hydroxybutyrate) (PHB)/poly(l-lactic acid) (PLLA) blends in the form of films. Polimeros 14:187–193Google Scholar
  16. 16.
    Torres A, Li SM, Roussos S, Vert M (1996) Screening of microorganisms for biodegradation of poly(lactic acid) and lactic acid-containing polymers. J Appl Environ Microbiol 62:2393–2397Google Scholar
  17. 17.
    Kima K, Yua M, Zonga X, Chiuc J, Dufei F, Seod YS, Hsiaoa BS, Chua B, Hadjiargyrou M (2003) Control of degradation rate and hydrophilicity in electrospun non-woven poly(d,l-lactide) nanofiber scaffolds for biomedical applications. Biomaterials 24:4977–4985CrossRefGoogle Scholar
  18. 18.
    Lee KB, Yoon KR, Woo SI, Choi IS (2003) Surface modification of poly(glycolic acid) (PGA) for biomedical applications. J Pharmaceutical Sci 92:933–937CrossRefGoogle Scholar
  19. 19.
    Nakagaito AN, Fujimura A, Sakai T, Hama Y, Yano H (2009) Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Compos Sci Technol 69:1293–1297CrossRefGoogle Scholar
  20. 20.
    Graupner N, Herrmanna AS, Müssig J (2009) Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: an overview about mechanical characteristics and application areas. Compos A 40:810–821CrossRefGoogle Scholar
  21. 21.
    Hudaa MS, Drzala LT, Mohanty AK, Misraa M (2006) Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites: a comparative study. Compos Sci Technol 66:1813–1824CrossRefGoogle Scholar
  22. 22.
    Kasugaa T, Ota Y, Nogamia M, Abec Y (2000) Preparation and mechanical properties of polylactic acid composites containing hydroxyapatite fibers. Biomaterials 22:19–23CrossRefGoogle Scholar
  23. 23.
    Hapuarachchia TD, Peijsa T (2010) Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fibre reinforced composites. Compos A 41:954–963CrossRefGoogle Scholar
  24. 24.
    Buzarovska A, Gualandi C, Parrillic A, Scandol M (2015) Effect of TiO2 nanoparticle loading on poly(l-lactic acid) porous scaffolds fabricated by TIPS. Compos B 81:189–195CrossRefGoogle Scholar
  25. 25.
    Matsuno H, Matsuyama R, Yamamoto A, Tanaka K (2015) Enhanced cellular affinity for poly(lactic acid) surfaces modified with titanium oxide. Polym J 47:505–512CrossRefGoogle Scholar
  26. 26.
    Mabrouk AB, Kaddami H, Boufi S, Erchiqui F, Dufresn A (2012) Cellulosic nanoparticles from alfa fibers (Stipa tenacissima): extraction procedures and reinforcement potential in polymer nanocomposites. Cellulose 19:843–853CrossRefGoogle Scholar
  27. 27.
    Frone AN, Berlioz S, Chailan JF, Panaitescu DM (2013) Morphology and thermal properties of PLA–cellulose nanofibers composites. Carbohydr Polym 91:377–384CrossRefPubMedGoogle Scholar
  28. 28.
    Silvério HA, Neto WPF, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crops Prod 44:427–436CrossRefGoogle Scholar
  29. 29.
    Satyanarayana KG, Guimarães JL, Wypycha F (2007) Studies on lignocellulosic fibers of Brazil. Part I: source, production, morphology, properties and applications. Compos A 38:1694–1709CrossRefGoogle Scholar
  30. 30.
    Margem FM, JIgor M, Gomes VA, Ribeiro CGD, Braga FO, Monteiro SN (2015) Flexural behavior of epoxy matrix composites reinforced with malva fiber. Mater Res 18:114–120CrossRefGoogle Scholar
  31. 31.
    Monteiro SN, Margem FM, Margem JI, Martins LBS, Oliveira CG, Oliveira MP (2014) Dynamic-mechanical behavior of malva fiber reinforced polyester matrix composites. Mater Sci Forum 775:278–283CrossRefGoogle Scholar
  32. 32.
    Faez MS, Bassa A (2006) Eucalyptus fibre for cement composites. In: 10th international inorganic-bonded fiber, composites, conference, 101, IIBCC 2006Google Scholar
  33. 33.
    Bledzki AK, Jaszkiewicz A (2010) Mechanical performance of biocomposite based on PLA and PHBV reinforced with natural fibres—a comparative study to PP. Compos Sci Technol 70:1687–1696CrossRefGoogle Scholar
  34. 34.
    Karmarkar A, Chauhana SS, Modak JM, Chanda M (2007) Mechanical properties of wood–fiber reinforced polypropylene composites: effect of a novel compatibilizer with isocyanate functional group. Compos A 38:227–233CrossRefGoogle Scholar
  35. 35.
    Mengeloglu F, Kabakci A (2008) Determination of thermal properties and morphology of eucalyptus wood residue filled high density polyethylene composites. Intern J Mol Sci 9:107–119CrossRefGoogle Scholar
  36. 36.
    Oliveira PF, Marques MFV (2015) Chemical treatment of natural malva fibers and preparation of green composites with poly(3-hydroxybutyrate). Chem Chem Technol 9:211–222CrossRefGoogle Scholar
  37. 37.
    Najafi N, Heuzey MC, Carreau PJ (2012) Polylactide (PLA)-clay nanocomposites prepared by melt compounding in the presence of a chain extender. Compos Sci Technol 72:608–615CrossRefGoogle Scholar
  38. 38.
    Panaitescu DM, Frone NA, Ghiurea M, Spataru CI, Radovici C, Iorga MD (2011) Properties of polymer composites with cellulose microfibrils. In: Attaf B (ed) Materials science composite materials. Advances in composite materials: ecodesign analysis, Vol 5. InTech, Rijeka, pp 103–122Google Scholar
  39. 39.
    Corrêa AC, Tonoli GHD, Teixeira EM, Marconcini JM, Caixeta LA, Pereira SMA, Mattoso LHC (2012) Cellulose micro/nanofibres from eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89:80–88CrossRefPubMedGoogle Scholar
  40. 40.
    Cheng Q, Wang S, Rials TG, Lee SH (2007) Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers. Cellulose 14:593–602CrossRefGoogle Scholar
  41. 41.
    Huda MS, Drzal LT, Misra M, Mohanty AK (2006) Wood-fiber-reinforced poly(lactic acid) composites: evaluation of the physicomechanical and morphological properties. J Appl Polym Sci 102:4856–4869CrossRefGoogle Scholar
  42. 42.
    Alberti LD, Souza OF, Bucci DZ, Barcellos IO (2014) Study on physical and mechanical properties of PHB biocomposites with rice hull ash. Mater Sci 775:557–561Google Scholar
  43. 43.
    Carrasco F, Pagès P, Pérez JG, Santana OO, Maspoch ML (2010) Processing of poly(lactic acid): characterization of chemical structure, thermal stability and mechanical properties. Polym Degrad Stabil 95:116–125CrossRefGoogle Scholar
  44. 44.
    Canevarolo SV (2004) Técnicas de Caracterização de Polímeros. Artliber, São Paulo, p 448Google Scholar
  45. 45.
    Ljungberg N, Wesslén B (2002) The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid). J Appl Polym Sci 86:1047–1315CrossRefGoogle Scholar
  46. 46.
    Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers Basel 2:728–765CrossRefGoogle Scholar
  47. 47.
    Goud G, Rao RN (2012) Effect of fibre content and alkali treatment on mechanical properties of Roystonea regia-reinforced epoxy partially biodegradable composites. Bull Mater Sci 34:1575–1581CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rafael da Silva Araújo
    • 1
    • 2
  • Maria de Fátima Vieira Marques
    • 1
    Email author
  • Priscila Ferreira de Oliveira
    • 1
  • Claudinei Calado Rezende
    • 2
  1. 1.Instituto de Macromoléculas Professora Eloisa Mano – UFRJ, Centro de Tecnologia, Bloco JCidade UniversitáriaRio de JaneiroBrazil
  2. 2.Departamento de MateriaisCEFETBelo HorizonteBrazil

Personalised recommendations