Journal of Polymers and the Environment

, Volume 26, Issue 9, pp 3718–3730 | Cite as

The Effect of Composite Nucleating Agent on the Crystallization Behavior of Branched Poly (Lactic Acid)

  • Peng Chen
  • Kesong Yu
  • Yaqiao Wang
  • Wenbo Wang
  • Hongfu Zhou
  • Hangquan Li
  • Jianguo Mi
  • Xiangdong WangEmail author
Original Paper


Composite nucleating agent (CNA) consisting of zinc oxide as a crystallization promoter and phenylphosphonic acid zinc salt (PPZn) as an heterogeneous nucleation agent was employed to improve the crystallization behaviors of branched poly (lactic acid) (B-PLA) which was prepared by use of multi-functional epoxy-based chain extender (CE). The differential scanning calorimeter results showed that the crystallinity and crystallization temperature of prepared B-PLA/CNA were higher than that of linear poly (lactic acid) (L-PLA) and B-PLA at a high cooling rate. The corresponding phenomena of heterogeneous nucleation of B-PLA/CNA were observed by means of polarized optical microscope. The crystalline mechanism research results show that the degradation reaction and chain extending reaction were occurred simultaneously after the addition of CE and CNA into the PLA, PPZn as an effective nucleation points could increase the nucleation density and the degraded short molecular chains with higher chain mobility would improve crystal growth during the crystallization of the branched PLA. Non-isothermal cold crystallization kinetics of various B-PLA with different content of CNA was studied. The corresponding result showed that the crystallinity and crystallization rate increased obviously with the CNA content greater than or equal to 5phr, as well as the crystallization time decreased. The similar experimental results of non-isothermal and isothermal melt crystallization kinetics also showed that CNA had a significant impact on crystallization behavior of B-PLA.


Branched poly (lactic acid) Composite nucleating agent Phenyl phosphonic acid zinc salt Zinc oxide Crystallization behavior 



This work was supported by Beijing Natural Science Foundation (2162012 and 2164058) and the National Science Foundation of China (51673004 and 51703004).


  1. 1.
    Garlotta D (2001) J Polym Environ 9:63–84CrossRefGoogle Scholar
  2. 2.
    Rancan F, Papakostas D, Hadam S, Hackbarth S, Delair T, Primard C, Verrier B, Sterry W, Blume-Peytavi U, Vogt A (2009) Pharm Res 26:2027–2036CrossRefPubMedGoogle Scholar
  3. 3.
    Auras R, Singh SP, Singh J (2006) J Test Eval 34:530–536Google Scholar
  4. 4.
    Pilla S, Kim SG, Auer GK, Gong S, Park CB (2010) Mater Sci Eng C 30:255–262CrossRefGoogle Scholar
  5. 5.
    Nofar M, Zhu W, Park CB, Randall J (2011) Ind Eng Chem Res 50:13789–13798CrossRefGoogle Scholar
  6. 6.
    Ji G, Zhai W, Lin D, Qian R, Zheng W, Dong WJ (2013) Ind Eng Chem Res 52:6390–6398CrossRefGoogle Scholar
  7. 7.
    Ding W, Jahani D, Chang E, Alemdar A, Park CB, Sain M (2015) Compos A 83:130–139CrossRefGoogle Scholar
  8. 8.
    Ameli A, Nofar M, Jahani D, Rizvi G, Park CB (2015) Chem Eng J 262:78–87CrossRefGoogle Scholar
  9. 9.
    Wang J, Zhu W, Zhang H, Park CB (2012) Chem Eng Sci 75:390–399CrossRefGoogle Scholar
  10. 10.
    Larsen A, Neldin C (2013) Polym Eng Sci 53:941–949CrossRefGoogle Scholar
  11. 11.
    Liao X, Nawaby AV, Naguib HE (2012) J Appl Polym Sci 124:585–594CrossRefGoogle Scholar
  12. 12.
    Mihai M, Huneault MA, Favis BD (2009) J Appl Polym Sci 113:2920–2932CrossRefGoogle Scholar
  13. 13.
    Mihaela M, Huneault MA, Favis BD (2010) Polym Eng Sci 50:629–642CrossRefGoogle Scholar
  14. 14.
    Nofar M, Tabatabaei A, Park CB (2013) Polymer 54:2382–2391CrossRefGoogle Scholar
  15. 15.
    Liu W, Li H, Wang X, Du Z, Zhang C (2013) Cell Polym 32:343CrossRefGoogle Scholar
  16. 16.
    Mihaela M, Huneault MA, Favis BD, Hongbo L (2007) Macromol Biosci 7:907–920CrossRefGoogle Scholar
  17. 17.
    Saeidlou S, Huneault MA, Li H, Park CB (2012) Prog Polym Sci 37:1657–1677CrossRefGoogle Scholar
  18. 18.
    Keshtkar M, Nofar M, Park CB, Carreau PJ (2014) Polymer 55:4077–4090CrossRefGoogle Scholar
  19. 19.
    Nofar MR, Barzegari MR, Tabatabaaei A, Keshtkar M, Park CB (2012) Paper presented at the Annual Technical ConferenceGoogle Scholar
  20. 20.
    Xu Y, Wu L (2013) Eur Polym J 49:865–872CrossRefGoogle Scholar
  21. 21.
    Pan P, Liang Z, Cao A, Inoue Y (2009) ACS Appl Mater Interfaces 1:402–411CrossRefPubMedGoogle Scholar
  22. 22.
    Chen P, Zhou H, Liu W, Zhang M, Du Z, Wang X (2015) Polym Degrad Stab 122:25–35CrossRefGoogle Scholar
  23. 23.
    Zhu W, Nofar MR, Zhai W, Park CB, Randall J (2011) Conference PaperGoogle Scholar
  24. 24.
    Zhou M, Zhou P, Xiong P, Qian X, Zheng H (2015) Macromol Res 23:231–236CrossRefGoogle Scholar
  25. 25.
    You J, Yu W, Zhou C (2014) Ind Eng Chem Res 53:1097–1107CrossRefGoogle Scholar
  26. 26.
    Cao G, Lee H, Lynch VM, Mallouk TE (1988) Inorg Chem 27:2781–2785CrossRefGoogle Scholar
  27. 27.
    Fischer EW, Sterzel HJ, Wegner G (1973) Colloid Polym Sci 251:980–990Google Scholar
  28. 28.
    Jeziorny A (1978) Polymer 19:1142–1144CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Peng Chen
    • 1
    • 2
  • Kesong Yu
    • 1
    • 2
  • Yaqiao Wang
    • 1
    • 2
  • Wenbo Wang
    • 1
    • 2
  • Hongfu Zhou
    • 1
    • 2
  • Hangquan Li
    • 3
  • Jianguo Mi
    • 3
  • Xiangdong Wang
    • 1
    • 2
    Email author
  1. 1.School of Materials and Mechanical EngineeringBeijing Technology and Business UniversityBeijingPeople’s Republic of China
  2. 2.Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of PlasticsBeijingPeople’s Republic of China
  3. 3.State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical TechnologyBeijingPeople’s Republic of China

Personalised recommendations