Journal of Polymers and the Environment

, Volume 26, Issue 9, pp 3564–3573 | Cite as

Thermal and Rheological Properties of Poly(lactic acid)/Low-Density Polyethylene Blends and Their Supercritical CO2 Foaming Behavior

  • Hongfu ZhouEmail author
  • Mingming Zhao
  • Zhongjie Qu
  • Jianguo Mi
  • Xiangdong WangEmail author
  • Yafeng Deng
Original Paper


Low-density polyethylene (LDPE) was employed to improve the thermal and rheological properties as well as the supercritical CO2 foaming behavior of poly(lactic acid) (PLA) through melt mixing and batch foaming method, due to its long branched chain structure, moderate crystallization capacity and good foamability. The differential scanning calorimetry and polarized optical microscope results showed that the introduction of LDPE had a slight effect for promoting the crystallization of PLA. An important synergistic effect on the rheological properties of PLA/LDPE blends was found through rotational rheometer. With the content of LDPE, the size of spherical LDPE dispersion phase became bigger gradually, which was observed by scanning electron microscope (SEM). A very interesting cellular morphology evolution from flower-like cellular structure to complex cellular structure and then to mono-porous cell structure was found in the SEM images of the PLA/LDPE blending foams with the foaming temperature at 95 °C. The effect of blending ratio and foaming temperature on the cellular morphology and foaming parameters was investigated.


Poly(lactic acid) Low-density polyethylene (LDPE) Foam Cellular morphology Blend 



This work was supported by the National Science Foundation of China (51703004 and 51673004), the Natural Science Foundation of Beijing (2164058 and 2162012), Top Young Innovative Talents Program of Beijing Municipal University (CIT&TCD201704041), and Beijing Municipal Commission Education Scientific and Technological Innovation Project (KM201510011005).


  1. 1.
    Nofar M, Park CB (2014) Prog Polym Sci 39:1721CrossRefGoogle Scholar
  2. 2.
    Nofar M, Tabatabaei A, Sojoudiasli H, Park CB, Carreau PJ, Heuzey MC, Kamal MR (2017) Eur Polym J 90:231CrossRefGoogle Scholar
  3. 3.
    Lim LT, Auras R, Rubino M (2008) Prog Polym Sci 33:820CrossRefGoogle Scholar
  4. 4.
    Geng L, Li L, Mi H, Chen B, Sharma P, Ma H, Hsiao BS, Peng X, Kuang T (2017) ACS Appl Mater Interfaces 9:25Google Scholar
  5. 5.
    Kuang T, Chen F, Chang L, Zhao Y, Fu D, Gong X, Peng X (2016) Chem Eng J 307:1017CrossRefGoogle Scholar
  6. 6.
    Kuang T, Chang L, Chen F, Sheng Y, Fu D, Peng X (2016) Carbon 105:305CrossRefGoogle Scholar
  7. 7.
    Dean KM, Petinakis E, Meure S, Yu L, Chryss A (2012) J Polym Environ 20:741CrossRefGoogle Scholar
  8. 8.
    Ludwiczak J, Kozlowski M (2015) J Polym Environ 23:137CrossRefGoogle Scholar
  9. 9.
    Shin BY, Han DH, Narayan R (2010) J Polym Environ 18:558CrossRefGoogle Scholar
  10. 10.
    Pradeep SA, Kharbas H, Turng LS, Avalos A, Lawrence JG, Pilla S (2017) Polymers 9:22CrossRefGoogle Scholar
  11. 11.
    Richards E, Rizvi R, Chow A, Naguib H (2008) J Polym Environ 16:258CrossRefGoogle Scholar
  12. 12.
    Kohlhoff D, Ohshima M (2011) Macromol Mater Eng 296:770CrossRefGoogle Scholar
  13. 13.
    Zhao H, Yan X, Zhao G, Guo Z (2016) Polym Eng Sci 56:939CrossRefGoogle Scholar
  14. 14.
    Wang X, Liu W, Li H, Du Z, Zhang C (2016) J Cell Plast 52:37CrossRefGoogle Scholar
  15. 15.
    Wang X, Liu W, Zhou H, Liu B, Li H, Du Z, Zhang C (2013) Polymer 54:5839CrossRefGoogle Scholar
  16. 16.
    Huang A, Kharbas H, Ellingham T, Mi H, Turng LS, Peng X (2016) Polym Eng Sci 57:570CrossRefGoogle Scholar
  17. 17.
    Ma P, Wang X, Liu B, li Y, Chen S, Zhang Y, Xu G (2012) J Cell Plast 48:191CrossRefGoogle Scholar
  18. 18.
    Zhao H, Zhao G (2016) J Mech Behave Biomed 53:59CrossRefGoogle Scholar
  19. 19.
    Zhang W, Chen B, Zhao H, Yu P, Fu D, Wen J, Peng X (2014) J Appl Polym Sci 130:3066CrossRefGoogle Scholar
  20. 20.
    Shi X, Zhang G, Liu Y, Ma Z, Jing Z, Fan X (2016) Polym Adv Technol 27:550CrossRefGoogle Scholar
  21. 21.
    Jia P, Hu J, Zhai W, Duan Y, Zhang J, Han C (2015) Ind Eng Chem Res 54:2476CrossRefGoogle Scholar
  22. 22.
    Yu P, Mi HY, Huang A, Geng LH, Chen BY, Kuang TR, Mou WJ, Peng XF (2015) Ind Eng Chem Res 54:6199CrossRefGoogle Scholar
  23. 23.
    Bao D, Liao X, He T, Yang Q, Li G (2013) J Polym Res 20:290CrossRefGoogle Scholar
  24. 24.
    Zhao H, Cui Z, Sun X, Turng LS, Peng X (2013) Ind Eng Chem Res 52:2569CrossRefGoogle Scholar
  25. 25.
    Mihai M, Huneault MA, Favis BD, Li H (2007) Macromol Biosci 7:907CrossRefPubMedGoogle Scholar
  26. 26.
    Dordinejad AK, Jafari SH (2013) J Appl Polym Sci 130:3240CrossRefGoogle Scholar
  27. 27.
    Yu C, Wang Y, Wu B, Li W (2011) Polym Test 30:118CrossRefGoogle Scholar
  28. 28.
    Pilla S, Kim SG, Aue GK, Gong S, Park CB (2010) Mat Sci Eng C 30:255CrossRefGoogle Scholar
  29. 29.
    Lu X, Tang L, Wang L, Zhao J, Li D, Wu Z, Xiao P (2016) Polym Test 54:90CrossRefGoogle Scholar
  30. 30.
    Sumigin D, Tarasova E, Krumme A, Viikna A, Est P (2012) Acad Sci 61:237Google Scholar
  31. 31.
    Wang Z, Ding X, Zhao M, Wang X, Xu G, Xiang A, Zhou H (2017) J Supercrit Fluid 125:22CrossRefGoogle Scholar
  32. 32.
    Djellali S, Sadoun T, Haddaoui N, Bergeret A (2015) Polym Bull 72:1177CrossRefGoogle Scholar
  33. 33.
    Li C, Shan P, Soares JBP, Penlidis A (2003) Polymer 44:177CrossRefGoogle Scholar
  34. 34.
    Yao K, Tan H, Lin Y, Zhang G, Gong J, Qiu J, Tang T, Na H, Jiang Z (2014) RSC Adv 4:64053CrossRefGoogle Scholar
  35. 35.
    Wei Q, Chionna D, Galoppini E, Pracella M (2003) Macromol Chem Phys 204:1123CrossRefGoogle Scholar
  36. 36.
    Rachtanapun P, Selke SEM, Matuana LM (2004) J Appl Polym Sci 93:364CrossRefGoogle Scholar
  37. 37.
    Gendron R (2005) Thermoplastic foam processing: principles and development. CRC Press, Boca RatonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials and Mechanical EngineeringBeijing Technology and Business UniversityBeijingPeople’s Republic of China
  2. 2.Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of PlasticsBeijingPeople’s Republic of China
  3. 3.State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical TechnologyBeijingPeople’s Republic of China

Personalised recommendations