Dispersion and Rheological Properties of Aqueous Graphene Suspensions in Presence of Nanocrystalline Cellulose
- 175 Downloads
- 1 Citations
Abstract
The possibility and feasibility of nanocrystalline cellulose (NCC) for dispersing hydrophobic graphene in aqueous solutions were studied in the present work. The dispersion properties of graphene particles in aqueous media as a function of various amounts of NCC were investigated. The rheological behavior of NCC-dispersed graphene suspensions was studied, and a polynomial model was proposed and employed to simulate the obtained shear flow of graphene suspensions. The results of UV–Vis analysis and sedimentation test suggested that the increased NCC addition significantly led to the improved dispersion properties of graphene suspensions. Rheological behavior measurements demonstrated that graphene suspensions exhibited a reduction trend in the shear viscosity, shear stress, and viscoelasticity with the increased amount of NCC addition. Meanwhile, the shear viscosity and shear stress of graphene suspensions were found to show a dependency on the process temperature. The above results supported the conclusion that NCC is a promising candidate for improving the dispersion and flowability of graphene in aqueous media.
Keywords
Nanocrystalline cellulose Dispersant Graphene Rheological behavior Dispersion propertiesNotes
Acknowledgements
This work was financially supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY14C160003), National Natural Science Foundation of China (Grant No. 31100442), the Public Projects of Zhejiang Province (Grant Nos. 2016C31075, 2017C31059), Zhejiang Provincial Top Key Academic Discipline of Chemical Engineering, Technology, Zhejiang Open Foundation of the Most Important Subjects (Grant No. 2016KF01), 521 Talent Cultivation Program of Zhejiang Sci-Tech University (Grant No. 11110132521310) and Open Foundation of the Key Lab of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Grant No. KF201403), Open Foundation of Key Lab of Biomass Energy and Material of Jiangsu Province (Grant No. JSBEM201602), and Open Foundation of Key Laboratory of Renewable Energy, Chinese Academy of Sciences (Grant No. Y607s11001). and the Science and Technology Projects of Hangzhou City (Grant No. 20150533B83).
Author Contributions
YT and XZ conceived and designed the experiments; XZ, XW and DG performed the experiments and analyzed the data; XZ, YT, JZ and XZ wrote the paper. All authors reviewed the manuscript.
Compliance with Ethical Standards
Conflict of interest
The authors declare that they have no conflict of interest.
References
- 1.Zhao F, Li H, Jiang Y, Wang X, Mu X (2014) Green Chem 16:2558–2565CrossRefGoogle Scholar
- 2.Yue L, Pircheraghi G, Monemian SA, Manas-Zloczower I (2014) Carbon 78:268–278CrossRefGoogle Scholar
- 3.Shahzadi K, Zhang X, Mohsin I, Ge X, Jiang Y, Peng H, Liu H, Li H, Mu X (2017) ACS Nano 11:5717–5725CrossRefPubMedGoogle Scholar
- 4.Mou K, Yang L, Xiong H, Cha R (2017) Paper Biomater 2:35–41Google Scholar
- 5.Pu N-W, Wang C-A, Liu Y-M, Sung Y, Wang D-S, Ger M-D (2012) J Taiwan Inst Chem Eng 43:140–146CrossRefGoogle Scholar
- 6.Smith RJ, Lotya M, Coleman JN (2010) New J Phys 12:125008CrossRefGoogle Scholar
- 7.Dai L, Liu R, Hu L, Zou Z, Si C (2017) ACS Sustain Chem Eng 5:8241–8249CrossRefGoogle Scholar
- 8.Du H, Liu C, Mu X, Gong W, Lv D, Hong Y, Si C, Li B (2016) Cellulose 23:2389–2407CrossRefGoogle Scholar
- 9.Huang B, Tang Y, Pei Q, Zhang K, Liu D, Zhang X (2017) J Polym Environ. https://doi.org/10.1007/s10924-017-1075-5 CrossRefGoogle Scholar
- 10.Du H, Liu C, Zhang Y, Yu G, Si C, Li B (2016) Ind Crops Prod 94:736–745CrossRefGoogle Scholar
- 11.An X, Cheng D, Shen J, Jia Q, He Z, Zheng L, Khanb A, Sun B, Xiong B, Ni Y (2017) J Bioresour Bioprod 2:45–49Google Scholar
- 12.Dimic-Misic K, Gane PAC, Paltakari J (2013) Ind Eng Chem Res 52:16066–16083CrossRefGoogle Scholar
- 13.Dimic-Misic K, Salo T, Paltakari J, Gane P (2014) Nord Pulp Pap Res J 29:253–270CrossRefGoogle Scholar
- 14.Dimic-Misic K, Ridgway C, Maloney T, Paltakari J, Gane P (2014) Transp Porous Media 103:155–179CrossRefGoogle Scholar
- 15.Al-Dulaimi AA, Wanrosli WD (2016) J Polym Environ 25:192–202CrossRefGoogle Scholar
- 16.Li B, Xu W, Kronlund D, Maattanen A, Liu J, Smatt JH, Peltonen J, Willfor S, Mu X, Xu C (2015) Carbohydr Polym 133:605–612CrossRefPubMedGoogle Scholar
- 17.Medeiros ES, Offeman RD, Klamczynski AP, Glenn GM, Mattoso LHC, Orts WJ (2014) J Polym Environ 22:219–226CrossRefGoogle Scholar
- 18.Anžlovar A, Huskić M, Žagar E (2016) Cellulose 23:505–518CrossRefGoogle Scholar
- 19.Yang S, Tang Y, Wang J, Kong F, Zhang J (2014) Ind Eng Chem Res 53:13980–13988CrossRefGoogle Scholar
- 20.Liu Y, Wang H, Yu G, Yu Q, Li B, Mu X (2014) Carbohydr Polym 110:415–422CrossRefPubMedGoogle Scholar
- 21.Wang C, Huang H, Jia M, Jin S, Zhao W, Cha R (2015) Carbohydr Polym 130:275–279CrossRefPubMedGoogle Scholar
- 22.Yang L, Lu S, Li J, Zhang F, Cha R (2016) Carbohydr Polym 136:1035–1040CrossRefPubMedGoogle Scholar
- 23.Cheng S, Zhang Y, Cha R, Yang J, Jiang X (2016) Nanoscale 8:973–978CrossRefPubMedGoogle Scholar
- 24.Tang Y, He Z, Mosseler JA, Ni Y (2014) Cellulose 21:4569–4581CrossRefGoogle Scholar
- 25.Ge X, Li H, Wu L, Li P, Mu X, Jiang Y (2017) J Appl Polym Sci 134:44910CrossRefGoogle Scholar
- 26.Sadasivuni KK, Kafy A, Zhai L, Ko HU, Mun S, Kim J (2015) Small 11:994–1002CrossRefPubMedGoogle Scholar
- 27.Tang Y, Yang S, Zhang N, Zhang J (2014) Cellulose 21:335–346CrossRefGoogle Scholar
- 28.Lu P, Hsieh Y-L (2010) Carbohydr Polym 82:329–336CrossRefGoogle Scholar
- 29.Shen X, Tang Y, Zhou D, Zhang J, Guo D, Friederichs G (2016) J Bioresour Bioprod 4:48–54Google Scholar
- 30.Peng X, Ren J, Sun R (2011) Carbohydr Polym 83:1922–1928CrossRefGoogle Scholar
- 31.El Miri N, Abdelouahdi K, Barakat A, Zahouily M, Fihri A, Solhy A, El Achaby M (2015) Carbohydr Polym 129:156–167CrossRefPubMedGoogle Scholar
- 32.Dimic-Misic K, Puisto A, Gane P, Nieminen K, Alava M, Paltakari J, Maloney T (2013) Cellulose 20:2847–2861CrossRefGoogle Scholar
- 33.Tang Y, Zhou D, Zhang J, Zhu X (2013) Dig J Nanomater Bios 8:1699–1710Google Scholar
- 34.Pan J, Hamad W, Straus SK (2010) Macromolecules 43:3851–3858CrossRefGoogle Scholar
- 35.Ureña-Benavides EE, Ao G, Davis VA, Kitchens CL (2011) Macromolecules 44:8990–8998CrossRefGoogle Scholar
- 36.Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2012) Langmuir 28:17124–17133CrossRefPubMedGoogle Scholar
- 37.Peng XW, Ren JL, Zhong LX, Cao XF, Sun RC (2011) J Agric Food Chem 59:570–576CrossRefPubMedGoogle Scholar
- 38.Sanna R, Fortunati E, Alzari V, Nuvoli D, Terenzi A, Casula MF, Kenny JM, Mariani A (2013) Cellulose 20:2393–2402CrossRefGoogle Scholar