Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 8, pp 3458–3469 | Cite as

Fabrication and Characterization of Poly(lactic acid) Biocomposites Reinforced by Calcium Sulfate Whisker

  • Ji-nian Yang
  • Shi-bin Nie
  • Jin-bo Zhu
Original Paper
  • 118 Downloads

Abstract

The biodegradable poly(lactic acid) (PLA) composites filled with calcium sulfate whisker (CSW) were fabricated via melt-blending and subsequent injection molding. Surface organification of γ-aminopropyltriethoxysilane (APTES) on CSW was applied to accelerate the wettability of PLA to CSW. The mechanical properties, morphological structures, crystallization behaviors and thermal stabilities of PLA/CSW composites were investigated in detail. Results showed that modification of APTES changed the surface morphologies and element compositions, helping to form the well bonded interfaces. By adding CSW, the elastic modulus of PLA/CSW composites presented a sustained increment, while tensile strength, elongation at break and impact toughness were increased first and then decreased. The presence of CSW impeded the melt-crystallization but accelerated the cold-crystallization process. On the whole, the actual crystallinity for the composites was suppressed except for the case with 20% CSW. The thermal stability was enhanced by CSW as expected, and all the samples showed the exact same reaction order (n = 1) according to Carrasco method. Nevertheless, the activation energies were declined, indicating CSW was in favor of thermal decomposition of PLA phases. Finally, it was interestingly found that CSW could improve the comprehensive properties of PLA without deteriorating the processibility.

Keywords

Poly(lactic acid) Crystallization Thermal property Kinetic analysis Processibility 

Notes

Acknowledgements

This work was supported by the National Natural Science fund of China (Nos. 51775001 and 51303004), the Anhui Province Post Doctoral Researchers in Scientific Research Projects (No. 2014B006) and the Pre-research Project on Natural (Social) Science Fund of Anhui University of Science and Technology (No. 2016yz003).

References

  1. 1.
    Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297:803–807CrossRefPubMedGoogle Scholar
  2. 2.
    Nampoothiri KM, Nair NR, Jonh RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501CrossRefGoogle Scholar
  3. 3.
    Murariu M, Dubois P (2016) PLA composites: from production to properties. Adv Drug Deliv Rev 105:17–46CrossRefGoogle Scholar
  4. 4.
    Arrieta MP, López J, Ferrándiz S, Peltzer MA (2013) Characterization of PLA-limonene blends for food packaging applications. Polym Test 32:760–768CrossRefGoogle Scholar
  5. 5.
    Hashima K, Nishttsuji S, Inoue T (2010) Structure-properties of super-tough PLA alloy with excellent heat resistance. Polymer 51:3934–3939CrossRefGoogle Scholar
  6. 6.
    Anderson KS, Schreck KM, Hillmyer MA (2008) Toughening polylactide. Polym Rev 48:85–108CrossRefGoogle Scholar
  7. 7.
    Semba T, Kitagawa K, Ishiaku US, Hamada H (2006) The effect of crosslinking on the mechanical properties of polylactic acid/polycaprolactone blends. J Appl Polym Sci 101:1816–1825CrossRefGoogle Scholar
  8. 8.
    Wang R, Wang S, Zhang Y, Wan C, Ma P (2009) Toughening modification of PLLA/PBS blends via in situ compatibilization. Polym Eng Sci 49:26–33CrossRefGoogle Scholar
  9. 9.
    Jiang L, Wolcott MP, Zhang J (2006) Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends. Biomacromol 7:199–207CrossRefGoogle Scholar
  10. 10.
    Li Y, Shimizu H (2007) Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer. Macromol Biosci 7:921–928CrossRefPubMedGoogle Scholar
  11. 11.
    Ho CH, Wang CH, Lin CI, Lee YD (2008) Synthesis and characterization of TPO-PLA copolymer and its behavior as compatibilizer for PLA/TPO blends. Polymer 49:3902–3910CrossRefGoogle Scholar
  12. 12.
    Su ZZ, Li QY, Liu YJ, Hu GH, Wu CF (2009) Compatibility and phase structure of binary blends of poly(lactic acid) and glycidyl methacrylate grafted poly(ethylene octane). Eur Polym J 45:2428–2433CrossRefGoogle Scholar
  13. 13.
    Ma P, Hristova-Bogaerds DG, Goossens JGP, Spoelstra AB, Zhang Y, Lemstra PJ (2012) Toughening of poly(lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents. Eur Polym J 48:146–154CrossRefGoogle Scholar
  14. 14.
    Zhang HL, Liu NN, Ran XH, Han CY, Han LJ, Zhuang YG, Dong LS (2012) Toughening of polylactide by melt blending with methyl methacrylate-butadiene-styrene copolymer. J Appl Polym Sci 125:E550–E561CrossRefGoogle Scholar
  15. 15.
    Yang JN, Nie SB, Zhu JB (2016) A comparative study on different rubbery modifiers: effect on morphologies, mechanical, and thermal properties of PLA blends. J Appl Polym Sci 133:43340Google Scholar
  16. 16.
    Liang JZ, Duan DR, Tang CY, Tsui CP, Chen DZ, Zhang SD (2015) Mechanical properties and morphology of poly(l-lactic acid)/nano-CaCO3 composites. J Polym Environ 23:21–29CrossRefGoogle Scholar
  17. 17.
    Murariu M, Ferreira ADS, Degée P, Alexandre M, Dubois P (2007) Polylactide compositions. Part 1: effect of filler content and size on mechanical properties of PLA/calcium sulfate composites. Polymer 48:2613–2618CrossRefGoogle Scholar
  18. 18.
    Hong ZK, Zhang PB, He CL, Qiu XY, Liu AX, Chen L, Chen XS, Jing XB (2005) Nano-composite of poly(l-lactide) and surface grafted hydroxyapatite: mechanical properties and biocompatibility. Biomaterials 26:6296–6304CrossRefPubMedGoogle Scholar
  19. 19.
    Wu LB, Cao D, Huang Y, Li BG (2008) Poly(l-lactic acid)/SiO2 nanocomposites via in situ melt polycondensation of l-lactic acid in the presence of acidic silica sol: preparation and characterization. Polymer 49:742–748CrossRefGoogle Scholar
  20. 20.
    Murariu M, Bonnaud L, Yoann P, Fontaine G, Bourbigot S, Dubois P (2010) New trends in polylactide (PLA)-based materials: “Green” PLA-calcium sulfate (nano)composites tailored with flame retardant properties. Polym Degrad Stab 95:374–381CrossRefGoogle Scholar
  21. 21.
    Luo YB, Li WD, Wang XL, Xu DY, Wang YZ (2009) Preparation and properties of nanocomposites based on poly(lactic acid) and functionalized TiO2. Acta Mater 57:3182–3191CrossRefGoogle Scholar
  22. 22.
    Zhuang GS, Sui GX, Meng H, Sun ZS, Yang R (2007) Mechanical properties of potassium titanate whiskers reinforced poly(ether ether ketone) composites using different compounding processes. Compos Sci Technol 67:1172–1181CrossRefGoogle Scholar
  23. 23.
    Wang JC, Yang K, Lu SJ (2011) Preparation and characterization of novel silicone rubber composites based on organophilic calcium sulfate whisker. High Perform Polym 23:141–150CrossRefGoogle Scholar
  24. 24.
    Wang HG, Mu B, Ren JF, Jian LQ, Zhang JY, Yang SR (2009) Mechanical and tribological behaviors of PA66/PVDF blends filled with calcium sulphate whiskers. Polym Compos 30:1326–1332CrossRefGoogle Scholar
  25. 25.
    Liu JY, Ren L, Wei Q, Wu JL, Liu S, Wang YJ, Li GY (2012) Microstructure and properties of polycaprolactone/calcium sulfate particle and whisker composites. Polym Compos 33:501–508CrossRefGoogle Scholar
  26. 26.
    Wang JC, Pan XC, Xue Y, Cang SJ (2011) Studies on the application properties of calcium sulfate whisker in silicone rubber composites. J Elastomers Plast 44:55–66CrossRefGoogle Scholar
  27. 27.
    Liu JY, Ren L, Wei Q, Wu JL, Liu S, Wang YJ, LI GY (2011) Fabrication and characterization of polycaprolactone/calcium sulfate whisker composites. Express Polym Lett 5:742–752CrossRefGoogle Scholar
  28. 28.
    Zhu ZC, Xu L, Chen GA (2011) Effect of different whiskers on the physical and tribological properties of non-metallic friction materials. Mater Des 32:54–61CrossRefGoogle Scholar
  29. 29.
    Wang JC, Tang LJ, Wu D, Guo X, Hao WL (2012) Application of modified calcium sulfate whisker in methyl vinyl silicone rubber composites. Polym Polym Compos 20:453–461CrossRefGoogle Scholar
  30. 30.
    Zhou J (2010) Property and microstructure of ABS composite modified with salt sulfate whisker. CIESC J 61:243–248 (in Chinese)Google Scholar
  31. 31.
    Chen RY, Zou W, Wu CR, Jia SK, Huang Z, Zhang GZ, Yang ZT, Qu JP (2014) Poly(lactic acid)/poly(butylene succinate)/calcium sulfate whiskers biodegradable blends prepared by vane extruder: analysis of mechanical properties, morphology, and crystallization behavior. Polym Test 34:1–9CrossRefGoogle Scholar
  32. 32.
    Chen SB, Wang QH, Wang TM (2011) Mechanical, damping, and thermal properties of calcium sulfate whisker-filled castor oil-based polyurethane/epoxy IPN composites. J Reinf Plast Compos 30:509–515CrossRefGoogle Scholar
  33. 33.
    Qin J, Shi WJ, Yang HY, Liu J, Yu J, Lv Q, Tian YZ (2013) Sonochemical activation calcium sulfate whisker with enhanced beta-nucleating ability for isotactic polypropylene. Colloid Polym Sci 291:2579–2587CrossRefGoogle Scholar
  34. 34.
    Wei ZY, Zhang WX, Chen GY, Liang JC (2011) Nonisothermal crystallization kinetics and melting behavior of isotactic polypropylene/calcium sulfate whisker composites. Polym Mater Sci Eng 27:66–69 (in Chinese)Google Scholar
  35. 35.
    Hu XL, Yu MF (2006) Study of calcium sulphate whiskers modified bismaleimide resin by friction and wear properties. Acta Polym Sin 5:686–691Google Scholar
  36. 36.
    Thomas MV, Puleo DA (2009) Calcium sulfate: properties and clinical applications. J Biomed Mater Res B 88:597–610CrossRefGoogle Scholar
  37. 37.
    La Gatta A, De Rosa A, Laurienzo P, Malinconico M, De Rosa M, Schiraldi C (2005) A novel injectable poly(ε-caprolactone)/calcium sulfate system for bone regeneration: synthesis and characterization. Macromol Biosci 5:1108–1117CrossRefPubMedGoogle Scholar
  38. 38.
    Gao C, Gao J, You X, Huo S, Li X, Zhang Y, Zhang W (2005) Fabrication of calcium sulfate/PLLA composites for bone repair. J Biomed Mater Res A 73:244–253CrossRefPubMedGoogle Scholar
  39. 39.
    Wang YQ, Li YC, Yuan A, Yuan B, Lei XR, Ma Q, Han J, Wang JX, Chen JY (2014) Preparation of calcium sulfate whiskers by carbide slag through hydrothermal method. Cryst Res Technol 49:800–807CrossRefGoogle Scholar
  40. 40.
    De Palma R, Peeters S, Van Bael MJ, Van den Rul H, Bonroy K, Laureyn W, Mullens J, Borghs G, Maes G (2007) Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible. Chem Mater 19:1821–1831CrossRefGoogle Scholar
  41. 41.
    Li D, Teoh WY, Gooding JJ, Selomulya C, Amal R (2010) Functionalization strategies for protease immobilization on magnetic nanoparticles. Adv Funct Mater 20:1767–1777CrossRefGoogle Scholar
  42. 42.
    Argon AS, Cohen RE (2003) Toughenability of polymers. Polymer 44:6013–6032CrossRefGoogle Scholar
  43. 43.
    Peng F, Shaw MT, Olson JR, Wei M (2011) Hydroxyapatite needle shaped particles/poly(l-lactic acid) electrospun scaffolds with perfect particle-along-nanofiber orientation and significantly enhanced mechanical properties. J Phys Chem C 115:15743–15751CrossRefGoogle Scholar
  44. 44.
    Liu L, Jin TZ, Coffin DR, Hicks KB (2009) Preparation of antimicrobial M membranes: coextrusion of poly(lactic acid) and nisaplin in the presence of plasticizers. J Agric Food Chem 57:8392–8398CrossRefPubMedGoogle Scholar
  45. 45.
    Wu DF, Wu L, Wu LF, Xu B, Zhang YS, Zhang M (2007) Nonisothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites. J Polym Sci B 45:1100–1113CrossRefGoogle Scholar
  46. 46.
    Li CL, Dou Q (2015) Non-isothermal crystallization kinetics and spherulitic morphology of nucleated poly(lactic acid): effect of dilithium cis-4-cyclohexene-1,2-dicarboxylate as a novel and efficient nucleating agent. Polym Adv Technol 26:376–384CrossRefGoogle Scholar
  47. 47.
    Yasuniwa M, Tsubakihara S, Sugimoto Y, Nakafuku C (2004) Thermal analysis of the double-melting behavior of poly(l-lactic acid). J Polym Sci B 42:25–32CrossRefGoogle Scholar
  48. 48.
    Song P, Chen GY, Wei ZY, Zhang WX, Liang JC (2013) Calorimetric analysis of the multiple melting behavior of melt-crystallized poly(l-lactic acid) with a low optical purity. J Therm Anal Calorim 111:1507–1514CrossRefGoogle Scholar
  49. 49.
    Valapa R, Hussain S, Iyer PK, Pugazhenthi G, Katiyar V (2015) Influence of graphene on thermal degradation and crystallization kinetics behaviour of poly(lactic acid). J Polym Res 22:175CrossRefGoogle Scholar
  50. 50.
    Park SD, Todo M, Arakawa K, Koganemaru M (2006) Effect of crystallinity and loading-rate on mode I fracture behavior of poly(lactic acid). Polymer 47:1357–1363CrossRefGoogle Scholar
  51. 51.
    Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706CrossRefGoogle Scholar
  52. 52.
    Carrasco F, Pagès P, Gámez-Pérez J, Santana OO, Maspoch ML (2010) Kinetics of the thermal decomposition of processed poly(lactic acid). Polym Degrad Stab 95:2508–2514CrossRefGoogle Scholar
  53. 53.
    Wang G, Li AM, Jiang RX (2010) Application of peak property method in research of polylactic acid pyrolysis properties. Acta Energiae Solaris Sinica 31:497–500 (in Chinese)Google Scholar
  54. 54.
    Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo J-E (2008) Polymer biodegradation: mechanisms and estimation techniques. Chemosphere 73:429–442CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials and EngineeringAnhui University of Science and TechnologyHuainanPeople’s Republic of China
  2. 2.School of Mining and Safety EngineeringAnhui University of Science and TechnologyHuainanPeople’s Republic of China

Personalised recommendations