Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 8, pp 3404–3411 | Cite as

Development of Novel Biodegradable Enrofloxacin–Silica Composite for In Vitro Drug Release Kinetic Studies

Original Paper
  • 5 Downloads

Abstract

A sustained drug delivery system is developed by using nonionic polymer to formulate drug release rate from silica capsules. To serve this purpose, silica capsules filled with poly(ethylene glycol) (PEG) were incorporated with a veterinary antibiotic drug enrofloxacin (ENF); as a model hydrophobic drug by using a general and facile sol–gel route. The physicochemical properties of the prepared drug-loaded composites were investigated by scanning electron microscope (SEM), nitrogen adsorption, Fourier transform infrared spectroscopy and thermal analysis (TGA). The impact of the media’s ionic strength on the drug release was evaluated over a range of 0–0.4 M to simulate the gastrointestinal feed in two physiological pH conditions. Sodium chloride was applied for ionic concentration adjustment due to its ability to salt out polymers in the midrange of the lyotropic series. Simultaneously, the drug release kinetics was evaluated by fitting experimental data to common empirical (zero-order, first order and Higuchi) and semi-empirical (Ritger–Peppas and Sahlin–Peppas) models. The drug release kinetics from capsules revealed a non-Fickian diffusion and pure relaxation-controlled release. Of these models, Sahlin–Peppas equation best fit the release data of ENF. To determine the best model, non-linear regressions were carried out.

Keywords

Encapsulation Enrofloxacin Polymeric drug carrier Drug release Silica capsule Kinetic Ab initio 

Notes

Acknowledgements

The authors gratefully acknowledge Bu-Ali Sina University for their financial support.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Jimenez A, Zaikov GE (2009) Recent advances in research on biodegradable polymers and sustainable composites. Nova Science Publishers, New YorkGoogle Scholar
  2. 2.
    Aich N, Plazas-Tuttle J, Lead JR, Saleh NB (2014) Environ Chem 11(6):609–623CrossRefGoogle Scholar
  3. 3.
    de Sousa A, Maria DA, de Sousa RG et al (2010) J Mater Sci 45:1478–1486CrossRefGoogle Scholar
  4. 4.
    Catauro M, Papale F, Bollino F et al (2014) Mater Sci Eng C 40:253–259CrossRefGoogle Scholar
  5. 5.
    Kokkarachedu V, Vimala K, Sakey R et al (2012) J Polym Environ 20:573–582CrossRefGoogle Scholar
  6. 6.
    Ravindra S, Varaprasad K, Narayana RN et al (2011) J Polym Environ 19:413–418CrossRefGoogle Scholar
  7. 7.
    Khan NU, Bharathi NP, Shreaz S et al (2011) J Polym Environ 19:607–614CrossRefGoogle Scholar
  8. 8.
    Slowing II, Vivero-Escoto JL, Wu CW, Lin VSY (2008) Adv Drug Deliv Rev 60:1278–1288CrossRefGoogle Scholar
  9. 9.
    Barbe BC, Bartlett J, Kong L et al (2004) Adv Mater 16:1959–1966CrossRefGoogle Scholar
  10. 10.
    Chen Y, Wang YJ, Yang LM, Luo GS (2008) AIChE J 54:298–309CrossRefGoogle Scholar
  11. 11.
    Trewyn BG, Slowing II, Giri S, Chen HT, Lin VSY (2007) Acc Chem Res 40:846–853CrossRefGoogle Scholar
  12. 12.
    Persad CV, Swamy BY, Reddy CLN et al (2012) J Polym Environ 20:344–352CrossRefGoogle Scholar
  13. 13.
    Vialpando M, Aerts A, Persoons J et al (2011) J Pharm Sci 100(8):3411–3420CrossRefGoogle Scholar
  14. 14.
    Speybroeck MV, Barillaro V, Thi TD et al (2009) J Pharm Sci 98(8):2648–2658CrossRefGoogle Scholar
  15. 15.
    Utech S, Boccaccini AR (2016) J Mater Sci 51:271–310CrossRefGoogle Scholar
  16. 16.
    Catauro M, Renella RA, Papale F, Ciprioti SV (2016) Mater Sci Eng C 61:51–55CrossRefGoogle Scholar
  17. 17.
    Kerkhofs S, Saidi F, Vandarvoort N et al (2015) J Mater Chem B 3:3054–3061CrossRefGoogle Scholar
  18. 18.
    Haritova A, Lashev L, Pashov D (2003) Res Vet Sci 74:241–245CrossRefGoogle Scholar
  19. 19.
    Nakagawa H, Keshikawa T, Matsumura M, Tsukamoto H (1991) Chem Pharm Bull 39:1837–1842CrossRefGoogle Scholar
  20. 20.
    Baral SS, Das N, Ramulu TS, Sahoo SK et al (2009) J Hazard Mater 161:1427–1435CrossRefGoogle Scholar
  21. 21.
    Friend DR (1992) J Microencapsul 9:469–480CrossRefGoogle Scholar
  22. 22.
    Takahasi Y, Tsukuda T, Izum C et al (1988) Chem Pharm Bull 36:2708–2710CrossRefGoogle Scholar
  23. 23.
    Alexander J, Fromtling RA, Bland JA et al (1991) J Med Chem 34(1):78–81CrossRefGoogle Scholar
  24. 24.
    Suzuki S, Lim JK (1994) J Microencapsul 11:197–203CrossRefGoogle Scholar
  25. 25.
    Kim EH, Choi HK (2004) Drug Deliv 11:365–370CrossRefGoogle Scholar
  26. 26.
    Kumar GP, Phani AR, Prasad RGSV. et al (2014) Int J Pharm 471:146–152CrossRefGoogle Scholar
  27. 27.
    Song M, Song J, Ning A et al (2010) Mater Sci Eng C 30:58–61CrossRefGoogle Scholar
  28. 28.
    Ebadi A, Rafati AA (2015) J Mol Liq 209:239–245CrossRefGoogle Scholar
  29. 29.
    Baral SS, Das N, Ramulu TS et al (2009) J Hazard Mater 161:1427–1435CrossRefGoogle Scholar
  30. 30.
    Martinez YN, Pinuel L, Castro GR, Breccia JD (2012) Appl Biochem Biotechnol 167:1421–1429CrossRefGoogle Scholar
  31. 31.
    Yang HS, Choi SY (1999) Thin Solid Films 348:69–73CrossRefGoogle Scholar
  32. 32.
    Brinker CJ, Scherer GW (1990) Structural changes during heating: amorphous systems. Academic Press, New York, pp 547–615Google Scholar
  33. 33.
    Fonseca LC, Paulab AJ, Martinezc DST, Alves OL (2016) New J Chem 40:8060–8067CrossRefGoogle Scholar
  34. 34.
    Dressman JB, Reppas C (2000) Eur J Pharm Sci 11:S73–S80CrossRefGoogle Scholar
  35. 35.
    Johnson JL, Holinej J, Williams MD (1993) Int J Pharm 90:151–159CrossRefGoogle Scholar
  36. 36.
    Lindahl WD, Ungell AL, Knutson L, Lennernas H (1997) Pharm Res 14:497–502CrossRefGoogle Scholar
  37. 37.
    Colombo P, Catellani PL, Peppas NA et al (1992) Int J Pharm 88:99–109CrossRefGoogle Scholar
  38. 38.
    Bravo SA, Lamas MC, Salomon CJ (2002) J Pharm Pharm Sci 5:213–219Google Scholar
  39. 39.
    Higuchi T (1963) J Pharm Sci 52:1145–1149CrossRefGoogle Scholar
  40. 40.
    Baker RW, Lonsdale HS (1974) Controlled release of biologically active agents. Plenum Press, New YorkGoogle Scholar
  41. 41.
    Hixson AW, Crowell JH (1931) Ind Eng Chem 23:923–931CrossRefGoogle Scholar
  42. 42.
    Ritger PL, Peppas NA (1987) J Control Release 5:23–36CrossRefGoogle Scholar
  43. 43.
    Peppas NA, Sahlin JJ (1989) Int J Pharm 57:169–172CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physical Chemistry, Faculty of ChemistryBu-Ali Sina UniversityHamadanIran
  2. 2.Phytochemistry Research CenterBu-Ali Sina UniversityHamadanIran

Personalised recommendations