Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 8, pp 3451–3457 | Cite as

Effects of Cashew Nut Shell Liquid and Its Decarboxylated Form on the Properties of Natural Rubber

  • Uraiwan Sookyung
  • Anoma Thitithammawong
  • Charoen Nakason
  • Charoen Pakhathirathien
  • Woothichai Thaijaroen
Original Paper
  • 108 Downloads

Abstract

Effects of addition of raw cashew nut shell liquid (CNSL) or its decarboxylated form (D-CNSL or cardanol) on curing characteristics, physical properties and temperature scanned stress relaxation were investigated. The study revealed that the CNSL containing high anacardic acid concentration acts as an acid activator and strongly affects curing behavior of NR compounds. The effective curing rate and curing efficiency, i.e., torque difference, crosslink density, and activation energy for curing, clearly increased with 2–5 phr of CNSL. Furthermore, physical properties and thermal stability also improved. However, when the acidity was removed by forming D-CNSL, the effects were totally different from those of the CNSL. The D-CNSL behaves like a plasticizer improving chain flexibility and might show dilution effects if used at a high content in the compound formulation. These effects are clearly seen in decreased curing rate and curing efficiency, together with slight losses of tensile properties, tear strength, and thermal stability, with D-CNSL addition.

Keywords

Natural rubber Cashew nut shell liquid Decarboxylated cashew nut shell liquid Renewable material Curing activator 

Notes

Acknowledgements

The authors would like to acknowledge the financial support from Natural Rubber Innovation Research Institute, Prince of Songkla University (Grant No. SAT601211S). This research was also supported by the Postdoctoral Fellowship from Prince of Songkla University to one of the authors (Miss. Uraiwan Sookyung).

References

  1. 1.
    Voirin C, Caillol S, Sadavarte NV, Tawade BV, Boutevin B, Wadgaonkar PP (2014) Polym Chem 5:3142CrossRefGoogle Scholar
  2. 2.
    Bhunia HP, Nando GB, Chaki TK, Basak A, Lenka S, Nayak PL (1999) Eur Polym J 35:1381CrossRefGoogle Scholar
  3. 3.
    Bhunia HP, Nando GB, Basak A, Lenka S, Nayak PL (1999) Eur Polym J 35:1713CrossRefGoogle Scholar
  4. 4.
    Cardona F, Kin-Tak AL, Fedrigo J (2012) J Appl Polym Sci 123:2131CrossRefGoogle Scholar
  5. 5.
    Devi A, Srivastava D (2006) J Appl Polym Sci 102:2730CrossRefGoogle Scholar
  6. 6.
    Arayapranee W, Rempel GL (2007) J Appl Polym Sci 106:2696CrossRefGoogle Scholar
  7. 7.
    Souza FG Jr, Soares BG, Siddaramaiah, Barra GMO, Herbst MH (2006) Polymer 47:7548CrossRefGoogle Scholar
  8. 8.
    Rajapakse RA, Gunasena WAS, Wijekoon KB, Korathota S (1978) Polymer 19:205CrossRefGoogle Scholar
  9. 9.
    Menon AR (2003) Iran Polym J 12:305Google Scholar
  10. 10.
    Menon ARR, Visconte LLY (2006) J Appl Polym Sci 102:3195CrossRefGoogle Scholar
  11. 11.
    Menon ARR, Pillai CKS, Nando GB (1996) Polym Degrad Stab 52:265CrossRefGoogle Scholar
  12. 12.
    Menon ARR, Sonia TA, Sudha JD (2006) J Appl Polym Sci 102:4801CrossRefGoogle Scholar
  13. 13.
    Menon ARR, Pillai CKS, Jin WS, Nah C (2005) Polym Int 54:629CrossRefGoogle Scholar
  14. 14.
    Mohapatra S, Nando GB (2015) Rubber Chem Technol 88:289CrossRefGoogle Scholar
  15. 15.
    Mohapatra S, Alex R, Nando GB (2016) J Appl Polym Sci 133:1CrossRefGoogle Scholar
  16. 16.
    Chuayjuljit S, Rattanametangkool P, Potiyaraj P (2007) J Appl Polym Sci 104:1997CrossRefGoogle Scholar
  17. 17.
    Lubi CM, Thachil ET (2008) Int J Polym Mater 57:17CrossRefGoogle Scholar
  18. 18.
    Coran AY (1993) Science and technology of rubber. Academic Press, New YorkGoogle Scholar
  19. 19.
    Garreta E, Agulló N, Borrós S (2002) KGK Kautsch Gummi Kunstst 55:82Google Scholar
  20. 20.
    Risfaheri T, Nur MA, Sailah I (2009) Indones J Agric Sci 2:11Google Scholar
  21. 21.
    López-Manchado MA, Arroyo M, Herrero B, Biagiotti J (2003) J Appl Polym Sci 89:1CrossRefGoogle Scholar
  22. 22.
    Flory PJ, Rehner J Jr (1943) J Chem Phys 11:521CrossRefGoogle Scholar
  23. 23.
    Ismail H, Ahmad Z, Mohd Ishak ZA (2001) Polym Int 50:612CrossRefGoogle Scholar
  24. 24.
    Kralevich ML, Koenig JL (1997) Compos Interfaces 5:125CrossRefGoogle Scholar
  25. 25.
    Bodecchi LM, Durante C, Malagoli M, Manfredini M, Marchetti A, Sighinolfi S (2011) Int J Spectrosc.  https://doi.org/10.1155/2011/641257 Google Scholar
  26. 26.
    Chen D, Shao H, Yao W, Huang B (2013) Int J Polym Sci.  https://doi.org/10.1155/2013/937284 Google Scholar
  27. 27.
    Vennemann N (2012) In: Sonbati AZE (eds) Thermoplastic elastomers. InTech, Croatia, pp 347–370Google Scholar
  28. 28.
    Barbe A, Bökamp K, Kummerlöwe C, Sollmann H, Vennemann N, Vinzelberg S (2005) Polym Eng Sci 45:1498CrossRefGoogle Scholar
  29. 29.
    Toki S, Hsiao BS, Amnuaypornsri S, Sakdapipanich J (2009) Polymer 50:2142CrossRefGoogle Scholar
  30. 30.
    Sookyung U, Nakason C, Thaijaroen W, Vennemann N (2014) Polym Test 33:48CrossRefGoogle Scholar
  31. 31.
    Vennemann N, Schwarze C, Kummerlöwe C (2014) Adv Mater Res 844:482CrossRefGoogle Scholar
  32. 32.
    Wang Q, Wang F, Cheng K (2009) Radiat Phys Chem 78:1001CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Rubber Technology and Polymer Science, Faculty of Science and TechnologyPrince of Songkla UniversityPattaniThailand
  2. 2.Faculty of Science and Industrial TechnologyPrince of Songkla UniversitySuratthaniThailand
  3. 3.Department of Science, Faculty of Science and TechnologyPrince of Songkla UniversityPattaniThailand
  4. 4.National Metal and Materials Technology Center (MTEC)Pathum ThaniThailand

Personalised recommendations