Journal of Polymers and the Environment

, Volume 26, Issue 8, pp 3412–3421 | Cite as

Cleaning of Wastewater from Total Coliform Using Chitosan–Grafted–Poly(2-methylaniline)

  • H. M. Abd El-SalamEmail author
  • Emad H. M. Kamal
  • M. S. Ibrahim
Original Paper


The preparation and characterization of a low-cost solid materials chitosan–graft–poly(2-methylaniline) as anti-coliform present in wastewater are confirmed by FTIR, TGA, XRD and SEM. The preparation is performed using ammonium persulphate as an oxidant. The data reveals that the grafting process enhances the efficiency of both chitosan and homo-poly(2-methylaniline) to remove coliform present in wastewater. The used wastewater contains 1600 colonies on testing total coliform using classical membrane filter techniques. The total coliform present in wastewater becomes zero by using 50 ppm of the graft, 100 ppm of chitosan and 1000 ppm of poly(2-methylaniline).


Chitosan–graft–poly(2-methylaniline) Anti-coliform Wastewater Removal efficiency 


  1. 1.
    Metcalf E (2002) In: Tchobanoglous G, Burton FL, Stensel HD (eds) Wastewater engineering: treatment and reuse, 4th edn. McGraw-Hill, New York, pp 1217–1344Google Scholar
  2. 2.
    Koivunen J, Heinonen-Tanski H (2005) Inactivation of enteric microorganisms with chemical disinfectants, UV irradiation and combined chemical/UV treatments. Water Res 39:1519–1526. CrossRefPubMedGoogle Scholar
  3. 3.
    Taghipour F (2004) Ultraviolet and ionizing radiation for microorganism inactivation. Water Res 38:3940–3948. CrossRefPubMedGoogle Scholar
  4. 4.
    Xu P, Janex M-L, Savoye P, Cockx A, Lazarova V (2002) Wastewater disinfection by ozone: main parameters for process design. Water Res 36:1043–1055. CrossRefPubMedGoogle Scholar
  5. 5.
    Tyrrell SA, Rippey SR, Watkins WD (1995) Inactivation of bacterial and viral indicators in secondary sewage effluents, using chlorine and ozone. Water Res 29:2483–2490. CrossRefGoogle Scholar
  6. 6.
    Giller S, Le Curieux F, Erb F, Marzin D (1997) Comparative genotoxicity of halogenated acetic acids found in drinking water. Mutagenesis 12:321–328. CrossRefPubMedGoogle Scholar
  7. 7.
    Yang X, Shang C, Huang J-C (2005) DBP formation in breakpoint chlorination of wastewater. Water Res 39:4755–4767. CrossRefPubMedGoogle Scholar
  8. 8.
    Rojas-Valencia M, Orta-de-Velásquez M, Vaca-Mier M, Franco V (2004) Ozonation by-products issued from the destruction of microorganisms present in wastewaters treated for reuse. Water Sci Technol 50:187–193CrossRefPubMedGoogle Scholar
  9. 9.
    Booth RA, Lester JN (1995) The potential formation of halogenated by-products during peracetic acid treatment of final sewage effluent. Water Res 29:1793–1801. CrossRefGoogle Scholar
  10. 10.
    Sabbahi S, Alouini Z, Ben Ayed L, Jemli M, Boudabbous A (2010) Inactivation of faecal bacteria in wastewater by methylene blue and visible light. Desalin Water Treat 20:209–219CrossRefGoogle Scholar
  11. 11.
    Dodane V, Vilivalam VD (1998) Pharmaceutical applications of chitosan. Pharm Sci Technol Today 1:246–253CrossRefGoogle Scholar
  12. 12.
    Janes KA, Calvo P, Alonso MJ (2001) Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev 47:83–97CrossRefPubMedGoogle Scholar
  13. 13.
    Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351CrossRefPubMedGoogle Scholar
  14. 14.
    Xie W, Xu P, Liu Q (2001) Antioxidant activity of water-soluble chitosan derivatives. Bioorg Med Chem Lett 11:1699–1701CrossRefPubMedGoogle Scholar
  15. 15.
    Xie W, Xu P, Wang W, Liu Q (2002) Preparation and antibacterial activity of a watersoluble chitosan derivative. Carbohydr Polym 50:35–40CrossRefGoogle Scholar
  16. 16.
    Wang H, Li W, Lu Y, Wang Z (1997) Studies on chitosan and poly(acrylic acid) interpolymer complex. I. Preparation, structure, pH-sensitivity, and salt sensitivity of complex-forming poly(acrylic acid): chitosan semi interpenetrating polymer network. J Appl Polym Sci 65:1445–1450CrossRefGoogle Scholar
  17. 17.
    Igberase E, Osifo P, Ofomaja A (2014) The adsorption of copper (II) ions by polyaniline grafted chitosan beads from aqueous solution: equilibrium, kinetic and desorption studies. J Environ Chem Eng 2:362–369CrossRefGoogle Scholar
  18. 18.
    Sayyah SM, Abd El-Khalek AA, Bahgat AA, Abd El-Salam HM (2001) Kinetic studies of the chemical polymerization of substituted aniline in aqueous solutions and characterization of the polymer obtained part 2: 3-Methylaniline. Int J Polym Mater 49:25CrossRefGoogle Scholar
  19. 19.
    Sayyah SM, Bahgat AA, Abd El-Salam HM (2001) Kinetic studies of the chemical polymerization of substituted aniline in aqueous solutions and characterization of the polymer obtained part 1: 3-Chloroaniline. Polym Int 50:197CrossRefGoogle Scholar
  20. 20.
    Sayyah SM, Abd El-Salam HM (2003) Aqueous oxidative chemical polymerization of N-methylaniline in acid medium and characterization of the obtained polymer. Int J Polym Mater 52:1087CrossRefGoogle Scholar
  21. 21.
    Sayyah SM, Bahgat AA, Abd El-Salam HM (2002) Kinetic studies of the aqueous oxidative polymerization of 3-hydroxyaniline and characterization of the polymer obtained. Int J Polym Mater 51:291CrossRefGoogle Scholar
  22. 22.
    Sayyah SM, Abd El-Salam HM, Bahgat AA (2002) Aqueous oxidative chemical polymerization of 3-methoxyaniline and characterization of its polymer. Int J Polym Mater 51:915CrossRefGoogle Scholar
  23. 23.
    Sayyah SM, Abd El-Salam HM, Wahba YS (2005) Aqueous oxidative chemical polymerization of N-methylaniline in acid medium and characterization of oxidative chemical polymerization of p-sulphanilamide and characterization of the obtained polymer, the obtained polymer. Int J Polym Mater 54:1Google Scholar
  24. 24.
    Sayyah SM, Abd El-Salam HM, Azzam EMS (2006) Oxidative chemical polymerization of some 3-alkoxyaniline surfactants and characterization of the obtained polymer. Int J Polym Mater 55:1Google Scholar
  25. 25.
    Bagheri A, Nateghi M, Massoumi A (1998) Electrochemical synthesis of highly electroactive polydiphenylamine/polybenzidine copolymer in aqueous solutions. Synth Met 97:85CrossRefGoogle Scholar
  26. 26.
    Roy B, Gupta M, Bhowmik L, Ray J (1999) Studies on water soluble conducting polymer: aniline initiated polymerization of m-aminobenzene sulfonic acid. Synth Met 100:233CrossRefGoogle Scholar
  27. 27.
    Gabriel A, Gustavo M, Miras M, Barbero C (1998) A soluble and electroactive polyaniline obtained by coupling of 4-sulfobenzenediazonium ion and poly (N-methylaniline). Synth Met 97:223CrossRefGoogle Scholar
  28. 28.
    Bessbousse H, Rhlalou T, Verchère J-F, Lebrun L (2008) Removal of heavy metal ions from aqueous solutions by filtration with a novel complexing membrane containing poly(ethyleneimine) in a poly(vinyl alcohol) matrix. J Membr Sci 307:249–259CrossRefGoogle Scholar
  29. 29.
    Jadhav HV (1992) Element of environmental chemistry. Himalaya Publishing Home, DelhiGoogle Scholar
  30. 30.
    Sudha PN (2010) In: Kim S-K (ed) Chitin, chitosan, oligosaccharides and their derivatives. CRC Press, New York, pp 561–585CrossRefGoogle Scholar
  31. 31.
    Abd El Salam HM, Kamal EHM, Ibrahim MS: (2016) Synthesis and characterization of chitosan-grafted-poly(2-hydroxyaniline) microstructures for water decontamination. J Polym Environ. CrossRefGoogle Scholar
  32. 32.
    Abd El_Salam HM, Askalany HG (2016) Synthesis and characterization of crystalline poly(N-(2-hydroxyethyl) aniline microspheres. High Perform Polym 29:227–236CrossRefGoogle Scholar
  33. 33.
    Silverstein RM, Bassler CG, Morill TC (1974) Spectroscopic identification of organic compounds. Wiley, New YorkGoogle Scholar
  34. 34.
    Gerba PC (2000) Indicator organisms. In: Maier RM, Pepper IL, Gerba CP (eds) Environmental microbiology. Academic Press, San Diego, pp 491–503Google Scholar
  35. 35.
    American Public Health Association (APHA) (2001) Revisions to standard methods for the examination of water and wastewater (supplement). APHA, Washington, DCGoogle Scholar
  36. 36.
    United States Environmental Protection Agency (USEPA) (2006) Hazard analysis critical control point (HACCP) strategies for distribution system monitoring, hazard assessment and control. HDR Inc., Washington, DCGoogle Scholar
  37. 37.
    Brözel VS, Cloete TE (1991) Effect of storage time and temperature on the aerobic plate count and on the community structure of two water samples. Water SA 17:289–295Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • H. M. Abd El-Salam
    • 1
    Email author
  • Emad H. M. Kamal
    • 2
  • M. S. Ibrahim
    • 1
  1. 1.Polymer Research Laboratory, Department of Chemistry, Faculty of ScienceBeni-Suef UniversityBeni-Suef CityEgypt
  2. 2.Forensic MedicineMinistry of JusticeCairoEgypt

Personalised recommendations