Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 8, pp 3397–3403 | Cite as

Efficient Acetylation of Xylans by Exploiting the Potassium Acetate Formed During the Alkaline Extraction

Original Paper
  • 20 Downloads

Abstract

Isolation of hemicelluloses through alkaline extraction results in formation of salts, which usually necessitates additional salt removal steps. In this study, acetylation of xylans was studied without the removal of potassium acetate (KAc), a commonly produced salt during the alkaline extraction, to find a facile method to alter the hydrophilic characteristics of hemicelluloses. The acetylation reaction was carried out solely with acetic anhydride without any catalysts or solvents added. The weight gain and ATR–FTIR analyses verified the acetylation of xylans in the presence of KAc. A significant decrease in water solubility and moisture uptake was observed upon acetylation in the presence of KAc which is also accompanied by an increase in thermal stability, disclosing an easy, efficient and environmentally friendly method to obtain hydrophobically modified xylans without the use of toxic catalysts and costly salt purification steps.

Keywords

Lignocellulosic biomass Hemicellulose Potassium acetate Acetylation Hydrophobic modification 

Notes

Acknowledgements

The present study was funded by METU Scientific Research Projects via Grant Number BAP-07-02-2014-007-191. The authors would like to acknowledge METU Central Laboratory for thermal degradation analysis.

References

  1. 1.
    Ebringerová A, Thomas H (2005) Adv Polym Sci 186:1–67CrossRefGoogle Scholar
  2. 2.
    Benko Z, Andersson A, Szengyel Z, Gáspár M, Réczey K, Stålbrand H (2007) Appl Biochem Biotechnol 137–140:253–265Google Scholar
  3. 3.
    Bahcegul E, Toraman HE, Ozkan N, Bakir U (2012) Bioresour Technol 103:440–445CrossRefGoogle Scholar
  4. 4.
    Panthapulakkal S, Pakharenko V, Sain M (2013) J Polym Environ 21:917–929CrossRefGoogle Scholar
  5. 5.
    Bazus A, Rigal L, Gaset A, Fontaine T, Wieruszeski JM, Fournet B (1993) Carbohydr Res 243:323–332CrossRefGoogle Scholar
  6. 6.
    Mikkonen KS, Heikkinen S, Soovre A, Peura M, Serimaa R, Hyvo L, Talja RA, Hele HJ (2009) Appl Polym Sci 114:457–466CrossRefGoogle Scholar
  7. 7.
    Fundador NGV, Enomoto-Rogers Y, Takemura A, Iwata T (2012) Carbohydr Polym 87:170–176CrossRefGoogle Scholar
  8. 8.
    Bahcegul E, Toraman HE, Erdemir D, Akinalan B, Ozkan N, Bakir U (2014) RSC Adv 4:34117–34126CrossRefGoogle Scholar
  9. 9.
    Gröndahl M, Eriksson L, Gatenholm P (2004) Biomacromolecules 5:1528–1535CrossRefGoogle Scholar
  10. 10.
    Escalante A, Gonçalves A, Bodin A, Stepan A, Sandström C, Toriz G, Gatenholm P (2012) Carbohydr Polym 87:2381–2387CrossRefGoogle Scholar
  11. 11.
    Ebringerová A, Heinze T (2000) Macromol Rapid Commun 21:542–556CrossRefGoogle Scholar
  12. 12.
    Peresin MS, Kammiovirta K, Setälä H, Tammelin T (2012) J Polym Environ 20:895–904CrossRefGoogle Scholar
  13. 13.
    Ren J, Peng X, Zhong L, Peng F, Sun R (2012) Carbohydr Polym 89:152–157CrossRefGoogle Scholar
  14. 14.
    Ren JL, Sun RC, Peng F (2008) Polym Degrad Stab 93:786–793CrossRefGoogle Scholar
  15. 15.
    Fang JM, Sun R, Fowler P, Tomkinson J, Hill CAS (1999) J Appl Polym Sci 74:2301–2311CrossRefGoogle Scholar
  16. 16.
    Sun RC, Fang JM, Tomkinson J (2000) Polym Degrad Stab 67:345–353CrossRefGoogle Scholar
  17. 17.
    Plackett D (2011) Biopolymers: new materials for sustainable films and coatings. Wiley, ChichesterCrossRefGoogle Scholar
  18. 18.
    Stepan AM, King AWT, Kakko T, Toriz G, Kilpeläinen I, Gatenholm P (2013) Cellulose 20:2813–2824CrossRefGoogle Scholar
  19. 19.
    Sato H, Uraki Y, Kishimoto T, Sano Y (2003) Cellulose 10:397–404CrossRefGoogle Scholar
  20. 20.
    Zhang G, Huang K, Jiang X, Huang D, Yang Y (2013) Carbohydr Polym 96:218–226CrossRefGoogle Scholar
  21. 21.
    Xu C, Leppänen AS, Eklund P, Holmlund P, Sjöholm R, Sundberg K, Willför S (2010) Carbohydr Res 345:810–816CrossRefGoogle Scholar
  22. 22.
    Egüés I, Stepan AM, Eceiza A, Toriz G, Gatenholm P, Labidi J (2014) Carbohydr Polym 102:12–20CrossRefGoogle Scholar
  23. 23.
    Sun XF, Sun RC, Sun JX (2004) Bioresour Technol 95:343–350CrossRefGoogle Scholar
  24. 24.
    Sun XF, Sun RC, Sun JX (2002) Agric Food Chem 50:6428–6433CrossRefGoogle Scholar
  25. 25.
    Ren JL, Sun RC, Liu CF, Cao ZN, Luo W (2007) Carbohydr Polym 70:406–414CrossRefGoogle Scholar
  26. 26.
    Özmen N, Çetin NS, Mengeloğlu F, Birinci E, Karakuş K (2013) BioResources 8:753–767CrossRefGoogle Scholar
  27. 27.
    Obataya E, Minato K (2008) Wood Sci Technol 42:567–577CrossRefGoogle Scholar
  28. 28.
    Zilliox C, Debeire P (1998) Enzyme Microb Technol 22:58–63CrossRefGoogle Scholar
  29. 29.
    Westbye P, Köhnke T, Glasser W, Gatenholm P (2007) Cellulose 14:603–613CrossRefGoogle Scholar
  30. 30.
    Eremeeva TE, Bykova TO (1993) J Chromatogr 639:159–164CrossRefGoogle Scholar
  31. 31.
    Brienzo M, Siqueira AF, Milagres AMF (2009) Biochem Eng J 46:199–204CrossRefGoogle Scholar
  32. 32.
    Stefke B, Windeisen E, Schwanninger M, Hinterstoisser B (2008) Anal Chem 80:1272–1279CrossRefGoogle Scholar
  33. 33.
    Rana AK, Basak RK, Mitra BC, Lawther M, Banerjee AN (1997) J Appl Polym Sci 64:1517–1523CrossRefGoogle Scholar
  34. 34.
    Gupta S, Madan RN, Bansal MC (1987) Tappi J 70:113–114Google Scholar
  35. 35.
    Kacurakova M, Ebringerova A, Hirsch J, Hromadkova Z (1994) J Sci Food Agric 66:423–427CrossRefGoogle Scholar
  36. 36.
    Smith B (1998) Infrared spectral interpretation: a systematic approach. CRC Press, Boca RatonGoogle Scholar
  37. 37.
    Riquelme N, Díaz-Calderón P, Enrione J, Matiacevich S (2015) Food Chem 175:478–484CrossRefGoogle Scholar
  38. 38.
    Bayazeed A, Farag S, Shaarawy S, Hebeish A (1998) Starch 50:89–93CrossRefGoogle Scholar
  39. 39.
    Jeon YS, Lowell AV, Gross RA (1999) Starch 51:90–93CrossRefGoogle Scholar
  40. 40.
    Hill CAS, Ormondroyd GA (2004) Holzforschung 58:544–547Google Scholar
  41. 41.
    Gröndahl M, Teleman A, Gatenholm P (2003) Carbohydr Polym 52:359–366CrossRefGoogle Scholar
  42. 42.
    Akkus M, Bahcegul E, Ozkan N, Bakir U (2014) RSC Adv 4:62295–62300CrossRefGoogle Scholar
  43. 43.
    Stevanic JS, Bergström EM, Gatenholm P, Berglund L, Salmén L (2012) J Mater Sci 47:6724–6732CrossRefGoogle Scholar
  44. 44.
    Aburto J, Alric I, Thiebaud S, Borredon E, Bikiaris D, Prinos J, Panayiotou C (1999) J Appl Polym Sci 74:1440–1451CrossRefGoogle Scholar
  45. 45.
    Fundador NGV, Enomoto-Rogers Y, Takemura A, Iwata T (2012) Polymer 53:3885–3893CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringMiddle East Technical UniversityAnkaraTurkey
  2. 2.Department of Polymer Science and TechnologyMiddle East Technical UniversityAnkaraTurkey
  3. 3.Central LaboratoryMiddle East Technical UniversityAnkaraTurkey
  4. 4.Department of BiotechnologyMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations