Two-step Conversion of Crude Glycerol Generated by Biodiesel Production into Biopolyols: Synthesis, Structural and Physical Chemical Characterization
- 111 Downloads
Abstract
In this work biopolyols were synthesized via two-step process from crude glycerol and castor oil. For better evaluation of analyzed process, the impact of its time and temperature on the structure and properties of biopolyols was determined. Obtained results fully justified conducting of synthesis in two steps. Prepared materials were characterized by hydroxyl value and water content comparable to polyols industrially applied in manufacturing of polyurethane materials. Synthesized biopolyols were characterized in terms of their chemical structure using spectroscopic techniques: Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance spectroscopy. Obtained data confirmed the influence of synthesis’ parameters on the chemical structure of prepared biopolyols and correlated with their other parameters. On both stages of reaction, collected by-products were also analyzed with FTIR spectroscopy.
Keywords
Crude glycerol Polycondensation Biopolyol Castor oil Chemical structureReferences
- 1.Puri M, Abraham RE, Barrow CJ (2012) Renew Sust Energy Rev 16:6022CrossRefGoogle Scholar
- 2.Yazdani SS, Gonzalez R (2007) Curr Opin Biotechnol 18:213CrossRefPubMedGoogle Scholar
- 3.Martin A, Richter M (2011) Eur J Lipid Sci Technol 113:100CrossRefGoogle Scholar
- 4.Oudshoorn MHM, Rissmann R, Bouwstra JA, Hennink WE (2006) Biomaterials 27:5471CrossRefPubMedGoogle Scholar
- 5.Melero JA, Vicente G, Paniagua M, Morales G, Muñoz P (2012) Bioresour Technol 103:142CrossRefPubMedGoogle Scholar
- 6.Hejna A, Kosmela P, Formela K, Piszczyk Ł, Haponiuk JT (2016) Renew Sust Energy Rev 66:449CrossRefGoogle Scholar
- 7.Gholami Z, Abdulla AZ, Lee KT (2014) Renew Sust Energy Rev 39:327CrossRefGoogle Scholar
- 8.Salehpour S, Dubé MA (2012) Macromol React Eng 6:85CrossRefGoogle Scholar
- 9.Gandini A, Lacerda TM (2015) Prog Polym Sci 48:1CrossRefGoogle Scholar
- 10.Hu S (2013) A Dissertation submitted to The Ohio State University, ColumbusGoogle Scholar
- 11.Luo X, Hu S, Zhang X, Li Y (2013) Bioresour Technol 139:323CrossRefPubMedGoogle Scholar
- 12.Ionescu M, Petrovic ZS (2010) J Cell Plast 46:223CrossRefGoogle Scholar
- 13.Haponiuk J, Piszczyk Ł, Danowska M, Strankowski M (2014) Patent application P.408610Google Scholar
- 14.Wirpsza Z, Banasiak S (2012) Patent PL 210779Google Scholar
- 15.Miyata A, Tsutsui T, Konga N, Matsumoto S, Ohkubo K (2012) Patent EP2080778Google Scholar
- 16.De Meulenaer VB, Huyghebaert A (2000) Chromatographia 51:44CrossRefGoogle Scholar
- 17.Kainthan RK, Muliawan EB, Hatzikiriakos SG, Brooks DE (2006) Macromolecules 39:7708CrossRefGoogle Scholar
- 18.Cassel S, Debaig C, Benvegnu T, Chaimbault P, Lafosse M, Plusquellec D, Rollin P (2001) Eur J Org Chem 2001:875CrossRefGoogle Scholar
- 19.Kumar TN, Sastry YSR, Lakshiminarayana G (1984) J Chromatogr 298:360CrossRefGoogle Scholar
- 20.Mubofu EB (2016) Sustain Chem Process 4:11CrossRefGoogle Scholar
- 21.IUPAC (1997) Compendium of chemical terminology, 2nd edn. IUPAC, ZurichGoogle Scholar
- 22.Wang Y, Wu J, Wan Y, Lei H, Yu F, Chen P, Lin X, Liu Y, Ruan R (2009) Int J Agric Biol Eng 2:32Google Scholar
- 23.Garti N, Aserin A, Zaidman B (1981) J Am Oil Chem Soc 58:878CrossRefGoogle Scholar
- 24.Krishnamurthi P, Ramalingam HB, Raju K (2015) Adv Appl Sci Res 6:44Google Scholar
- 25.Ahmed MK, McLeod MP, Nézivar J, Giuliani AW (2010) Spectroscopy 24:601CrossRefGoogle Scholar
- 26.Parvulescu A, Rossi M, Della Pina C, Ciriminna R, Pagliaro M (2011) Green Chem 13:143CrossRefGoogle Scholar
- 27.Coleman MM, Skovanek DJ, Hu J, Painter PC (1988) Macromolecules 21:59CrossRefGoogle Scholar
- 28.Ushikusa T (1990) Jpn J Appl Phys 29:2460CrossRefGoogle Scholar
- 29.Vlahov G (1999) Prog Nucl Mag Res Spectrosc 35:341CrossRefGoogle Scholar