Physicochemical, Antimicrobial and Cytotoxic Characteristics of Corn Starch Film Containing Propolis for Wound Dressing
- 149 Downloads
Abstract
Modern dressings increase the rate of wound healing rather than just covering them. Dressing can protect the injured skin and keep it appropriately moist to speed up the healing process. In this study, the ethanolic extract of propolis loaded with corn starch was successfully prepared using solvent casting. Characterizations of the samples performed in respect to their mechanical properties were examined by scanning electron microscopy, contact angle, and attenuated total reflectance—fourier transform infrared spectroscopy, as well as antimicrobial capacities. The MTT assay using fibroblast cells showed the cell viability of corn starch in the ethanolic extract of propolis wound dressing. The results showed that by increasing the amount of ethanolic propolis extract from 0.25 to 1%, the tensile strength and the Young’s modulus of the samples were decreased, the elongation at the break increased about 15% as compared to the control films, and the contact angle properties were detected by a slightly hydrophobic character of the films in the antibacterial activity against Escherichia coli and Staphylococcus aureus even at low ethanolic extract of propolis concentrations (1%), mainly due to its phenolic compounds. Therefore, ethanolic extract of propolis loaded with corn starch film will be a potential candidate for wound dressing and skin tissue engineering.
Keywords
Corn starch Antimicrobial activity Solvent casting PropolisReferences
- 1.Su C-H et al (1997) Biomaterials 18:17CrossRefGoogle Scholar
- 2.Wittaya-areekul S, Prahsarn C (2006) Int J Pharm 313:1CrossRefGoogle Scholar
- 3.Kannon GA, Garrett AB (1995) Dermatol Surg 21:7Google Scholar
- 4.Lin S-Y et al (2001) Biomaterials 22:22Google Scholar
- 5.Kavoosi G et al (2013) J Food Sci 78:2Google Scholar
- 6.Torres FG et al (2013) Starch-Stärke 65:7–8CrossRefGoogle Scholar
- 7.Gruen RL et al (1996) Aust N Z J Surg 66:3CrossRefGoogle Scholar
- 8.Persin Z et al (2011) Carbohyd Polym 84:1CrossRefGoogle Scholar
- 9.Castro JV et al (2005) Biomacromol 6:4Google Scholar
- 10.Donald AM (1994) Rep Prog Phys 57:11CrossRefGoogle Scholar
- 11.Arockianathan PM et al (2012) Int J Biol Macromol 50:4Google Scholar
- 12.Burdock G (1998) Food Chem Toxicol 36:4CrossRefGoogle Scholar
- 13.Juliano C et al (2007) J Drug Deliv Sci Technol 17:3CrossRefGoogle Scholar
- 14.Koo H et al (2000) Arch Oral Biol 45:2CrossRefGoogle Scholar
- 15.Alencar SM et al (2009) Quím Nova 32:1523–1527Google Scholar
- 16.Tosi B et al (1996) Phytother Res 10:4CrossRefGoogle Scholar
- 17.Scazzocchio F et al (2006) Microbiol Res 161:4CrossRefGoogle Scholar
- 18.Soylu E et al (2008) Asian J Chem 20:6Google Scholar
- 19.Kalogeropoulos N et al (2009) Food Chem 116:2CrossRefGoogle Scholar
- 20.Salehi H et al (2017) J Res Med Sci 22:110CrossRefPubMedPubMedCentralGoogle Scholar
- 21.Peng Y et al (2013) Int J Biol Macromol 59:52CrossRefGoogle Scholar
- 22.Hambleton A et al (2008) Biomacromolecules 9(3):1058–1063CrossRefGoogle Scholar
- 23.Bitencourt C et al (2014) Food Hydrocoll 40:145–152CrossRefGoogle Scholar
- 24.Araújo GKP et al (2015) Int J Food Sci Technol 50:9CrossRefGoogle Scholar
- 25.Pastor C et al (2010) Carbohydr Polym 82:4CrossRefGoogle Scholar
- 26.Bodini R et al (2013) LWT-Food Sci Technol 51:1CrossRefGoogle Scholar
- 27.Chang-Bravo L et al (2014) React Funct Polym 85:11–19CrossRefGoogle Scholar
- 28.Abolghasemi Fakhri L et al (2013) Iran Food Sci Technol Res J 8:4Google Scholar
- 29.Braunwarth H et al (2014) Wound Med 5:16–20CrossRefGoogle Scholar
- 30.Xu Y et al (2005) Ind Crops Prod 21:2Google Scholar
- 31.Pereira VA et al (2015) Food Hydrocoll 43:180–188CrossRefGoogle Scholar
- 32.Mano J et al (2003) J Mater Sci: Mater Med 14:2Google Scholar
- 33.Seligra PG et al (2016) Carbohydr Polym 138:66–74CrossRefGoogle Scholar
- 34.Córdoba AL et al (2013) Carbohydr Polym 95:1CrossRefGoogle Scholar
- 35.Mathew S et al (2006) Biopolymers 82:2CrossRefGoogle Scholar
- 36.Jaiswal R et al (2010) J Agric Food Chem 58:9Google Scholar
- 37.Bodini RB et al (2013) LWT-Food Sci Technol 51:104–110CrossRefGoogle Scholar
- 38.Sharaf S et al (2013) Int J Biol Macromol 59:408–416CrossRefGoogle Scholar
- 39.Popova M et al (2005) Phytomedicine 12:3CrossRefGoogle Scholar
- 40.Yaghoubi M et al (2007) DARU J Pharm Sci 15:1Google Scholar
- 41.Mishima S et al (2005) Bioorg Med Chem 13:20CrossRefGoogle Scholar
- 42.Mahdieh Z et al (2016) Mater Sci Eng C 69:301–310CrossRefGoogle Scholar