Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 8, pp 3345–3351 | Cite as

Physicochemical, Antimicrobial and Cytotoxic Characteristics of Corn Starch Film Containing Propolis for Wound Dressing

  • Asghar Eskandarinia
  • Mohammad Rafienia
  • Sepehr Navid
  • Maria Agheb
Original Paper

Abstract

Modern dressings increase the rate of wound healing rather than just covering them. Dressing can protect the injured skin and keep it appropriately moist to speed up the healing process. In this study, the ethanolic extract of propolis loaded with corn starch was successfully prepared using solvent casting. Characterizations of the samples performed in respect to their mechanical properties were examined by scanning electron microscopy, contact angle, and attenuated total reflectance—fourier transform infrared spectroscopy, as well as antimicrobial capacities. The MTT assay using fibroblast cells showed the cell viability of corn starch in the ethanolic extract of propolis wound dressing. The results showed that by increasing the amount of ethanolic propolis extract from 0.25 to 1%, the tensile strength and the Young’s modulus of the samples were decreased, the elongation at the break increased about 15% as compared to the control films, and the contact angle properties were detected by a slightly hydrophobic character of the films in the antibacterial activity against Escherichia coli and Staphylococcus aureus even at low ethanolic extract of propolis concentrations (1%), mainly due to its phenolic compounds. Therefore, ethanolic extract of propolis loaded with corn starch film will be a potential candidate for wound dressing and skin tissue engineering.

Keywords

Corn starch Antimicrobial activity Solvent casting Propolis 

References

  1. 1.
    Su C-H et al (1997) Biomaterials 18:17CrossRefGoogle Scholar
  2. 2.
    Wittaya-areekul S, Prahsarn C (2006) Int J Pharm 313:1CrossRefGoogle Scholar
  3. 3.
    Kannon GA, Garrett AB (1995) Dermatol Surg 21:7Google Scholar
  4. 4.
    Lin S-Y et al (2001) Biomaterials 22:22Google Scholar
  5. 5.
    Kavoosi G et al (2013) J Food Sci 78:2Google Scholar
  6. 6.
    Torres FG et al (2013) Starch-Stärke 65:7–8CrossRefGoogle Scholar
  7. 7.
    Gruen RL et al (1996) Aust N Z J Surg 66:3CrossRefGoogle Scholar
  8. 8.
    Persin Z et al (2011) Carbohyd Polym 84:1CrossRefGoogle Scholar
  9. 9.
    Castro JV et al (2005) Biomacromol 6:4Google Scholar
  10. 10.
    Donald AM (1994) Rep Prog Phys 57:11CrossRefGoogle Scholar
  11. 11.
    Arockianathan PM et al (2012) Int J Biol Macromol 50:4Google Scholar
  12. 12.
    Burdock G (1998) Food Chem Toxicol 36:4CrossRefGoogle Scholar
  13. 13.
    Juliano C et al (2007) J Drug Deliv Sci Technol 17:3CrossRefGoogle Scholar
  14. 14.
    Koo H et al (2000) Arch Oral Biol 45:2CrossRefGoogle Scholar
  15. 15.
    Alencar SM et al (2009) Quím Nova 32:1523–1527Google Scholar
  16. 16.
    Tosi B et al (1996) Phytother Res 10:4CrossRefGoogle Scholar
  17. 17.
    Scazzocchio F et al (2006) Microbiol Res 161:4CrossRefGoogle Scholar
  18. 18.
    Soylu E et al (2008) Asian J Chem 20:6Google Scholar
  19. 19.
    Kalogeropoulos N et al (2009) Food Chem 116:2CrossRefGoogle Scholar
  20. 20.
    Salehi H et al (2017) J Res Med Sci 22:110CrossRefGoogle Scholar
  21. 21.
    Peng Y et al (2013) Int J Biol Macromol 59:52CrossRefGoogle Scholar
  22. 22.
    Hambleton A et al (2008) Biomacromolecules 9(3):1058–1063CrossRefGoogle Scholar
  23. 23.
    Bitencourt C et al (2014) Food Hydrocoll 40:145–152CrossRefGoogle Scholar
  24. 24.
    Araújo GKP et al (2015) Int J Food Sci Technol 50:9CrossRefGoogle Scholar
  25. 25.
    Pastor C et al (2010) Carbohydr Polym 82:4CrossRefGoogle Scholar
  26. 26.
    Bodini R et al (2013) LWT-Food Sci Technol 51:1CrossRefGoogle Scholar
  27. 27.
    Chang-Bravo L et al (2014) React Funct Polym 85:11–19CrossRefGoogle Scholar
  28. 28.
    Abolghasemi Fakhri L et al (2013) Iran Food Sci Technol Res J 8:4Google Scholar
  29. 29.
    Braunwarth H et al (2014) Wound Med 5:16–20CrossRefGoogle Scholar
  30. 30.
    Xu Y et al (2005) Ind Crops Prod 21:2Google Scholar
  31. 31.
    Pereira VA et al (2015) Food Hydrocoll 43:180–188CrossRefGoogle Scholar
  32. 32.
    Mano J et al (2003) J Mater Sci: Mater Med 14:2Google Scholar
  33. 33.
    Seligra PG et al (2016) Carbohydr Polym 138:66–74CrossRefGoogle Scholar
  34. 34.
    Córdoba AL et al (2013) Carbohydr Polym 95:1CrossRefGoogle Scholar
  35. 35.
    Mathew S et al (2006) Biopolymers 82:2CrossRefGoogle Scholar
  36. 36.
    Jaiswal R et al (2010) J Agric Food Chem 58:9Google Scholar
  37. 37.
    Bodini RB et al (2013) LWT-Food Sci Technol 51:104–110CrossRefGoogle Scholar
  38. 38.
    Sharaf S et al (2013) Int J Biol Macromol 59:408–416CrossRefGoogle Scholar
  39. 39.
    Popova M et al (2005) Phytomedicine 12:3CrossRefGoogle Scholar
  40. 40.
    Yaghoubi M et al (2007) DARU J Pharm Sci 15:1Google Scholar
  41. 41.
    Mishima S et al (2005) Bioorg Med Chem 13:20CrossRefGoogle Scholar
  42. 42.
    Mahdieh Z et al (2016) Mater Sci Eng C 69:301–310CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Asghar Eskandarinia
    • 1
  • Mohammad Rafienia
    • 2
  • Sepehr Navid
    • 3
  • Maria Agheb
    • 1
  1. 1.Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Medical TechnologiesIsfahan University of Medical SciencesIsfahanIran
  2. 2.Biosensor Research CenterIsfahan University of Medical SciencesIsfahanIran
  3. 3.Department of microbiology, School of MedicineIsfahan University of Medical SciencesIsfahanIran

Personalised recommendations