Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 8, pp 3520–3529 | Cite as

Biological Recycling of Polyethylene Terephthalate: A Mini-Review

  • Rupali Koshti
  • Linchon Mehta
  • Nikesh Samarth
Review
  • 776 Downloads

Abstract

Plastics have become an inseparable part of our life in the society due to their merits such as low cost, light weight, good mechanical and thermal properties along with easy process ability. Since the last few decades, the unrestrained use of plastics in various fields like agriculture, packaging, transportation has raised a serious issue about its disposal and pollution. An efficient decomposition of plastics takes about 1000 years. Not only there is an increase in the problem of waste disposal of plastics but also they release CO2 and dioxins on burning which contributes to cause pollution. There is a growing concern for use of efficient microorganisms meant for biodegradation of non-degradable synthetic polymer because conventionally used methods for plastic disposal are ineffective for plastic waste management. This review paper focuses on one such type of plastic-polyethylene terephthalate (PET) which is widely used in a flexible packaging application, its manufacturing process and the various effects of waste generated by it on the surrounding environment. This review discusses an overview of various existing plastic disposal methods along with their limitations and mechanism of biodegradation of PET and factors affecting biodegradation.

Keywords

Plastics Polyethylene terephthalate Biodegradation Enzyme Etc 

References

  1. 1.
    Europe P (2015) Plastics—the facts 2015 an analysis of European plastics production, demand and waste data. http://www.plasticseurope.org/download_file/view/479/179
  2. 2.
    Asmita K, Shubhamsingh T, Tejashree S et al (2015) Isolation of plastic degrading micro-organisms from soil samples collected at various locations in Mumbai, India. Int Res J Environ Sci 4:77–85Google Scholar
  3. 3.
    Harrison JP, Schratzberger M, Sapp M, Osborn AM (2014) Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms. BMC Microbiol 14:1–15.  https://doi.org/10.1186/s12866-014-0232-4 CrossRefGoogle Scholar
  4. 4.
    Harper CA (1999) Modern plastics handbook, 1st edn. McGraw-Hill, New YorkGoogle Scholar
  5. 5.
    Al-sabagh AM, Yehia FZ, Eshaq G et al (2016) Greener routes for recycling of polyethylene terephthalate. Egypt J Pet 25:53–64.  https://doi.org/10.1016/j.ejpe.2015.03.001 CrossRefGoogle Scholar
  6. 6.
    Driedger AGJ, Dürr HH, Mitchell K, Cappellen P, Van (2015) Plastic debris in the Laurentian Great Lakes: a review. J Great Lakes Res 41:9–19.  https://doi.org/10.1016/j.jglr.2014.12.020 CrossRefGoogle Scholar
  7. 7.
    Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics bio-plastics. Int J Mol Sci 10:3722–3742.  https://doi.org/10.3390/ijms10093722 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sepperumal U, Markandan M, Palraja I (2013) Micromorphological and chemical changes during biodegradation of polyethylene terephthalate (PET) by Penicillium sp. J Microbiol Biotechnol Res 3:47–53Google Scholar
  9. 9.
    Webb HK, Arnott J, Crawford RJ, Ivanova EP (2013) Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers (Basel) 5:1–18.  https://doi.org/10.3390/polym5010001 CrossRefGoogle Scholar
  10. 10.
    (2015) India Polyethylene Terephthalate(PET) Resin Market (2011–2016). https://www.marketresearch.com/product/sample-7147622.pdf
  11. 11.
    Kondratowicz F, Ukielski R (2009) Synthesis and hydrolytic degradation of poly (ethylene succinate) and poly (ethylene terephthalate) copolymers. Polym Degrad Stab 94:375–382.  https://doi.org/10.1016/j.polymdegradstab.2008.12.001 CrossRefGoogle Scholar
  12. 12.
    Rwei S, Lin W, Wang J (2012) Synthesis and characterization of biodegradable and weather-durable PET / PEG / NDC copolymers. Colloid Polym Sci 290:1381–1392.  https://doi.org/10.1007/s00396-012-2662-6 CrossRefGoogle Scholar
  13. 13.
    Fink JK (2010) Handbook of engineering and speciality thermoplastics. Hoboken, Wiley.  https://doi.org/10.1002/9780470881712
  14. 14.
    Radian Corp., Mc Lean V (1985) Industrial process profiles for environmental use. Chapter 10. The plastics and resins production industry. Environmental Protection Agency, Mc LeanGoogle Scholar
  15. 15.
    Meyer T, Eds JK (2006) In Fakirov S (ed) Handbook of condensation thermoplastic elastomer. Wiley, New York.  https://doi.org/10.1002/3527606610
  16. 16.
    Brydson JA (1999) Plastics materials, 7th edn. Elsevier, AmsterdamGoogle Scholar
  17. 17.
    Thompson RC, Moore CJ, Saal FS et al (2009) Plastics, the environment and human health: current consensus and future trends. Philos Trans R Soc B.  https://doi.org/10.1098/rstb.2009.0053 CrossRefGoogle Scholar
  18. 18.
    Kakkar P, Shaw A (2010) Envis newsletter. Indian Institute of Toxicology Research Lucknow, IndiaGoogle Scholar
  19. 19.
    Avio CG, Gorbi S, Regoli F (2016) Plastics and microplastics in the oceans: from emerging pollutants to emerged threat. Mar Environ Res.  https://doi.org/10.1016/j.marenvres.2016.05.012 CrossRefPubMedGoogle Scholar
  20. 20.
    Khoo HH, Tan RBH (2010) Environmental impacts of conventional plastic and bio-based carrier bags. Int J Life Cycle Assess 15:338–345.  https://doi.org/10.1007/s11367-010-0163-8 CrossRefGoogle Scholar
  21. 21.
    Krueger MC, Harms H, Schlosser D (2015) Prospects for microbiological solutions to environmental pollution with plastics. Appl Microbiol Biotechnol 99:8857–8874.  https://doi.org/10.1007/s00253-015-6879-4 CrossRefPubMedGoogle Scholar
  22. 22.
    Mato Y, Isobe T, Takada H et al (2001) Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environ Sci Technol 35:318–324CrossRefPubMedGoogle Scholar
  23. 23.
    North EJ, Halden RU (2013) Plastics and environmental health: the road ahead. Rev Environ Health 28:1–8.  https://doi.org/10.1515/reveh-2012-0030 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sciences H, Zealand N (2002) The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull 44:842–852.  https://doi.org/10.1016/S0025-326X(02)00220-5 CrossRefGoogle Scholar
  25. 25.
    Qasaimeh A, Q MRA, Hani FB (2016) A review on biogas interception processes in municipal landfill. J Environ Sci Technol 9:1–25.  https://doi.org/10.3923/jest.2016.1.25 CrossRefGoogle Scholar
  26. 26.
    Simon B, Amor MB, Foldenyi R (2015) Life cycle impact assessment of beverage packaging systems: focus on the collection of post-consumer bottles. J Clean Prod.  https://doi.org/10.1016/j.jclepro.2015.06.008 CrossRefGoogle Scholar
  27. 27.
    Cleary J (2014) LCA OF WASTE MANAGEMENT SYSTEMS a life cycle assessment of residential waste management and prevention. Int J Life Cycle Assess.  https://doi.org/10.1007/s11367-014-0767-5 CrossRefGoogle Scholar
  28. 28.
    Kaminsky W (1991) Recycling of polymeric materials by pyrolysis. Microsymp Degrad Recycl Polym Mater 48:381–393.  https://doi.org/10.1002/masy.19910480127 CrossRefGoogle Scholar
  29. 29.
    Wilkie C, Mckinney MA (2004) Thermal properties of thermoplastics. In Troitzsch J Plastics flammability handbook. Principles, regulations, testing, and approval. Hanser, Munich, pp. 58–76. https://epublications.marquette.edu/cgi/viewcontent.cgi?article=1039&context=chem_fac
  30. 30.
    Gug J, Cacciola D, Sobkowicz MJ (2014) Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics. Waste Manag.  https://doi.org/10.1016/j.wasman.2014.09.031 CrossRefPubMedGoogle Scholar
  31. 31.
    Dayana S, Sharuddin A, Abnisa F et al (2016) A review on pyrolysis of plastic wastes. Energy Convers Manag 115:308–326.  https://doi.org/10.1016/j.enconman.2016.02.037 CrossRefGoogle Scholar
  32. 32.
    Burnley S, Coleman T, Peirce A (2015) Factors influencing the life cycle burdens of the recovery of energy from residual municipal waste. Waste Manag.  https://doi.org/10.1016/j.wasman.2015.02.022 CrossRefPubMedGoogle Scholar
  33. 33.
    Astrup T, Møller J, Fruergaard T (2009) Incineration and co-combustion of waste: accounting of greenhouse gases and global warming contributions. Waste Manag Res 27:789–799.  https://doi.org/10.1177/0734242X09343774 CrossRefPubMedGoogle Scholar
  34. 34.
    Levchik SV, Weil ED (2004) A review on thermal decomposition and combustion of thermoplastic polyesters. Polym Adv Technol 15:691–700.  https://doi.org/10.1002/pat.526 CrossRefGoogle Scholar
  35. 35.
    Vijayakumar CT, Ponnusamy E, Balakrishnan T, Kothandaraman H (1982) Thermal and pyrolysis studies of copolyesters. J Polym Sci A 20:2715–2725.  https://doi.org/10.1002/pol.1982.170200929 CrossRefGoogle Scholar
  36. 36.
    Francis R (2016) Recycling of polymers-methods, characterization and applications. Wiley, New YorkCrossRefGoogle Scholar
  37. 37.
    Karayannidis GP, Achilias DS (2007) Chemical recycling of poly (ethylene terephthalate). Macromol Mater Eng 292:128–146.  https://doi.org/10.1002/mame.200600341 CrossRefGoogle Scholar
  38. 38.
    Miskolczi N, Bartha L, Deák G, Jóver B (2003) Chemical recycling of waste polyethylene and polypropylene. Pet Coal 45:125–130Google Scholar
  39. 39.
    El Mejjatti A, Harit T, Riahi A et al (2014) Chemical recycling of poly (ethylene terephthalate). Application to the synthesis of multiblock copolyesters. eXPRESS Polym Lett 8:544–553.  https://doi.org/10.3144/expresspolymlett.2014.58 CrossRefGoogle Scholar
  40. 40.
    Grove M, Magidson H (1992) United States PatentGoogle Scholar
  41. 41.
    George E. Brown J (1976) United States PatentGoogle Scholar
  42. 42.
    Tustin GC (1995) United States PatentGoogle Scholar
  43. 43.
    For P, Formation M, Low OF et al (1986) United States PatentGoogle Scholar
  44. 44.
    Reynolds FU (1982) United States PatentGoogle Scholar
  45. 45.
    Blackmon KP (1990) United States PatentGoogle Scholar
  46. 46.
    Hiroshi I, Fujioka K (2004) United States PatentGoogle Scholar
  47. 47.
    Sinha V, Patel MR, Patel JV (2010) pet waste management by chemical recycling: a review. J Polym Environ 18:8–25.  https://doi.org/10.1007/s10924-008-0106-7 CrossRefGoogle Scholar
  48. 48.
    Venkatachalam S, Nayak SG, Labde JV et al (2012) Degradation and recyclability of poly (ethylene terephthalate). Polyester.  https://doi.org/10.5772/48612 CrossRefGoogle Scholar
  49. 49.
    Jain A, Soni RK (2007) Spectroscopic investigation of end products obtained by ammonolysis of poly (ethylene terephthalate) waste in the presence of zinc acetate as a catalyst. J Polym Res 14:475–481.  https://doi.org/10.1007/s10965-007-9131-9 CrossRefGoogle Scholar
  50. 50.
    Nakkabi A, Elmoualij N, Sadiki M et al (2015) Biodegradation of poly (ethylene terephthalate) by Bacillus subtilis. Int J Recent Adv Multidiscip Res 2:1060–1062Google Scholar
  51. 51.
    Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297:803–807.  https://doi.org/10.1126/science.297.5582.803 CrossRefPubMedGoogle Scholar
  52. 52.
    Bhardwaj H, Gupta R, Tiwari A (2012) Microbial population associated with plastic degradation. Open Access Sci Rep 1:10–13.  https://doi.org/10.4172/scientificreports.272 CrossRefGoogle Scholar
  53. 53.
    Cerda M, Kint D, Munoz-Guerra S, Marques-Calvo M (2004) Biodegradability of aromatic building blocks for poly (ethylene terephthalate) copolyesters. Polym Degrad Stab 85:865–871.  https://doi.org/10.1016/j.polymdegradstab.2004.04.001 CrossRefGoogle Scholar
  54. 54.
    Cerda M, Kint D, Munoz-Guerra S et al (2006) Enzymatic and microbial biodegradability of poly (ethylene terephthalate) copolymers containing nitrated units. Polym Degrad Stab 91:663–671.  https://doi.org/10.1016/j.polymdegradstab.2005.05.014 CrossRefGoogle Scholar
  55. 55.
    Kale SK, Deshmukh AG, Dudhare MS, Patil VB (2015) Microbial degradation of plastic: a review. J Biochem Tech 6:952–961Google Scholar
  56. 56.
    Mohan SK, Srivastava T (2011) Microbial deterioration and degradation of polymeric materials. J Biochem Tech 2:210–215Google Scholar
  57. 57.
    Mueller R (2006) Biological degradation of synthetic polyesters—Enzymes as potential catalysts for polyester recycling. Process Biochem 41:2124–2128.  https://doi.org/10.1016/j.procbio.2006.05.018 CrossRefGoogle Scholar
  58. 58.
    Mu R, Kleeberg I, Deckwer W (2001) Biodegradation of polyesters containing aromatic constituents. J Biotechnol 86:87–95.  https://doi.org/10.1016/S0168-1656(00)00407-7 CrossRefGoogle Scholar
  59. 59.
    Sharon C, Sharon M (2012) Studies on biodegradation of polyethylene terephthalate: a synthetic polymer. J Microbiol Biotechnol Res 2:248–257Google Scholar
  60. 60.
    Selke S, Auras R, Nguyen TA et al (2015) Evaluation of biodegradation-promoting additives for plastics. Environ Sci Technol 54:A-I.  https://doi.org/10.1021/es504258u CrossRefGoogle Scholar
  61. 61.
    Hermanova S, Smejkalov P, Merna J, Zarevucka M (2015) Biodegradation of waste PET based copolyesters in thermophilic anaerobic sludge. Polym Degrad Stab 111:176–184.  https://doi.org/10.1016/j.polymdegradstab.2014.11.007 CrossRefGoogle Scholar
  62. 62.
    Mergaert J, Swings J (1996) Biodiversity of microorganisms that degrade bacterial and synthetic polyesters. J Ind Microbiol 17:463–469.  https://doi.org/10.1007/BF01574777 CrossRefGoogle Scholar
  63. 63.
    Tokiwa Y, Calabia BP (2004) Degradation of microbial polyesters. Biotechnol Lett 26:1181–1189.  https://doi.org/10.1023/B:BILE.0000036599.15302.e5 CrossRefPubMedGoogle Scholar
  64. 64.
    Weiner S, Dove PM (2003) An overview of biomineralization processes and the problem of the vital effect. Rev Miner Geochem 54:1–29.  https://doi.org/10.2113/0540001 CrossRefGoogle Scholar
  65. 65.
    Li X, Lan J, Ai M et al (2014) Biomineralization on polymer-coated multi-walled carbon nanotubes with different surface functional groups. Colloids Surf B 26:1–9.  https://doi.org/10.1016/j.colsurfb.2014.10.026 CrossRefGoogle Scholar
  66. 66.
    Arutchelvi J, Sudhakar M, Arkatkar A et al (2008) Biodegradation of polyethylene and polypropylene. Indian J Biotechnol 7:9–22Google Scholar
  67. 67.
    Raaman N, Rajitha N, Jayshree A, Jegadeesh R (2012) Biodegradation of plastic by Aspergillus spp. isolated from polythene polluted sites around Chennai. J Acad Ind Res 1:313–316Google Scholar
  68. 68.
    Albertsson A, Karlsson S (1990) The influence of biotic and abiotic environments on the degradation of polyethylene. Prog Polym Sci 15:177–192CrossRefGoogle Scholar
  69. 69.
    Ma M, Wang L, Zhu H (2012) Enzymatic degradation of polyester-nanoparticles by lipases and adsorption of lipases on the polyester-nanoparticles. Adv Mater Res 420:2302–2307.  https://doi.org/10.4028/www.scientific.net/AMR.418-420.2302 CrossRefGoogle Scholar
  70. 70.
    Acero EH, Ribitsch D, Dellacher A et al (2013) Surface engineering of a cutinase from thermobifida cellulosilytica for improved polyester hydrolysis. Biotechnol Bioeng 110:2581–2590.  https://doi.org/10.1002/bit.24930 CrossRefGoogle Scholar
  71. 71.
    Ronkvist M, Xie W, Lu W, Gross RA (2009) Cutinase-catalyzed hydrolysis of poly (ethylene terephthalate). Macromolecules 42:5128–5138.  https://doi.org/10.1021/ma9005318 CrossRefGoogle Scholar
  72. 72.
    Ribitsch D, Heumann S, Trotscha E et al (2011) Hydrolysis of polyethyleneterephthalate by p-nitrobenzylesterase from Bacillus subtilis. Am Inst Chem Eng 27:951–960.  https://doi.org/10.1002/btpr.610 CrossRefGoogle Scholar
  73. 73.
    Muller RJ, Schrader H, Profe J et al (2005) Enzymatic degradation of poly (ethylene terephthalate): rapid hydrolyse using a hydrolase from T. fusca. Macromol Rapid Commun 26:1400–1405.  https://doi.org/10.1002/marc.200500410 CrossRefGoogle Scholar
  74. 74.
    Kawai F, Oda M, Tamashiro T et al (2014) A novel Ca2+ -activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190. Appl Microbiol Biotechnol 93:1–12.  https://doi.org/10.1007/s00253-014-5860-y CrossRefGoogle Scholar
  75. 75.
    Mensak B, Andreaus J, Zimmermann W et al (2004) Biocatalytic modification of polyethylene terephthalate fibres by esterases from actinomycete isolates. Biocatal Biotransform 22:347–351.  https://doi.org/10.1080/10242420400025877 CrossRefGoogle Scholar
  76. 76.
    Billig S, Oeser T, Birkemeyer C, Zimmermann W (2010) Hydrolysis of cyclic poly (ethylene terephthalate) trimers by a carboxylesterase from Thermobifida fusca KW3. Appl Microbiol Biotechnol 87:1753–1764.  https://doi.org/10.1007/s00253-010-2635-y CrossRefPubMedGoogle Scholar
  77. 77.
    Ribitsch D, Acero EH, Greimel K et al (2012) A new esterase from Thermobifida halotolerans hydrolyses polyethylene terephthalate (PET) and polylactic acid (PLA). Polymers (Basel) 4:617–629.  https://doi.org/10.3390/polym4010617 CrossRefGoogle Scholar
  78. 78.
    Wang X, Lu D, Jönsson LJ, Hong F (2008) Preparation of a PET-hydrolyzing lipase from Aspergillus oryzae by the addition of bis (2-hydroxyethyl) terephthalate to the culture medium and enzymatic modification of PET fabrics. Eng Life Sc 8:268–276.  https://doi.org/10.1002/elsc.200700058 CrossRefGoogle Scholar
  79. 79.
    El-ola SMA, Moharam ME, El-bendary MA (2013) Optimum conditions for surface modification of PET by lipase enzymes produced by Egyptian bacilli in comparison with standard one. Indian J Fibre Text Res 38:165–172.Google Scholar
  80. 80.
    Wei R, Oeser T, Then J et al (2014) Functional characterization and structural modeling of synthetic polyester-degrading hydrolases from Thermomonospora curvata. AMB express 11:1–10.  https://doi.org/10.1186/s13568-014-0044-9 CrossRefGoogle Scholar
  81. 81.
    Ali A, Eguchi T, Mayumi D et al (2013) Puri fi cation and properties of novel aliphatic-aromatic co-polyesters degrading enzymes from newly isolated Roseateles depolymerans strain TB-87. Polym Degrad Stab 98:609–618.  https://doi.org/10.1016/j.polymdegradstab.2012.11.013 CrossRefGoogle Scholar
  82. 82.
    Shao H, Xu L, Yan Y (2013) Isolation and characterization of a thermostable esterase from a metagenomic library. J Ind Microbiol Biotechnol 40:1211–1222.  https://doi.org/10.1007/s10295-013-1317-z CrossRefPubMedGoogle Scholar
  83. 83.
    Perz V, Bleymaier K, Sinkel C et al (2015) Substrate specificities of cutinases on aliphatic—aromatic polyesters and on their model substrates. New Biotechnol 0:1–10.  https://doi.org/10.1016/j.nbt.2015.11.004 CrossRefGoogle Scholar
  84. 84.
    Taylor P, Gupta D, Chaudhary H (2015) Topographical changes in polyester after chemical, physical and enzymatic hydrolysis. J Text Inst 106:690–698.  https://doi.org/10.1080/00405000.2014.934046 CrossRefGoogle Scholar
  85. 85.
    Nimchua T, Eveleigh DE, Punnapayak H (2008) Screening of tropical fungi producing polyethylene terephthalate-hydrolyzing enzyme for fabric modi W cation. J Ind Microbiol Biotechnol 35:843–850.  https://doi.org/10.1007/s10295-008-0356-3 CrossRefPubMedGoogle Scholar
  86. 86.
    Kitadokoro K, Thumarat U, Nakamura R et al (2012) Crystal structure of cutinase Est119 from Thermobifida alba AHK119 that can degrade modified polyethylene terephthalate at 1.76 Å resolution. Polym Degrad Stab 97:771–775.  https://doi.org/10.1016/j.polymdegradstab.2012.02.003 CrossRefGoogle Scholar
  87. 87.
    Acero EH, Ribitsch D, Steinkellner G et al (2011) Enzymatic surface hydrolysis of PET: effect of structural diversity on kinetic properties of cutinases from Thermobifida. Macromolecules 44:4632–4640.  https://doi.org/10.1021/ma200949p CrossRefGoogle Scholar
  88. 88.
    Espino-rammer L, Ribitsch D, Przylucka A et al (2013) Two novel class II hydrophobins from Trichoderma spp. stimulate enzymatic hydrolysis of poly (ethylene terephthalate) when expressed as fusion proteins. Appl Environ Microbiol 79:4230–4238.  https://doi.org/10.1128/AEM.01132-13 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Ribitsch D, Acero H, Przylucka A et al (2015) Enhanced cutinase-catalyzed hydrolysis of polyethylene terephthalate by covalent fusion to hydrophobins. Am Soc Microbiol 81:3586–3592.  https://doi.org/10.1128/AEM.04111-14 CrossRefGoogle Scholar
  90. 90.
    Roth C, Wei R, Oeser T et al (2014) Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca. Appl Microbiol Biotechnol 66:7815–7823.  https://doi.org/10.1007/s00253-014-5672-0 CrossRefGoogle Scholar
  91. 91.
    Yoshida S, Hiraga K, Takehana T et al (2016) A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351:1196–1199.  https://doi.org/10.1126/science.aad6359 CrossRefPubMedGoogle Scholar
  92. 92.
    Yosida (2016) Discovery of a bacterium that degrades and assimilates poly (ethylene terephthalate) could serve as a degradation and/or fermentation platform for biological recycling of PET waste products. Science 351:1196–1199CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MicrobiologySt. Xavier’s CollegeMumbaiIndia
  2. 2.Department of Polymer and Surface EngineeringInstitute of Chemical TechnologyMumbaiIndia

Personalised recommendations