Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 8, pp 3226–3236 | Cite as

Effect of Gamma Radiation on the Properties of Crosslinked Chitosan Nano-composite Film

  • A. M. Abdel Ghaffar
  • H. E. Ali
  • Sh. M. Nasef
  • Heba A. El-Bialy
Original Paper

Abstract

Chitosan nano-composite film crosslinked by citric acid and with glycerol as plasticizer and MgO as antibacterial agent was prepared by casting method. MgO nanoparticles were synthesized via calcination method in furnace at 500 °C for 4 h and characterized by X-ray diffraction and transmission electron microscope. The chitosan nano-composite film with composition chitosan/citric/glycerol/magnesium oxide (1 wt%:1 wt%:75 vol%:10 wt%) has high mechanical properties than other films. The effects of different irradiation doses on the mechanical, thermal and antibacterial activity were investigated. The tensile strength enhanced by increasing irradiation dose up to 10 kGy and the elongation negligible changed as irradiation dose increased. The thermal stability slightly increased up to dose 2.5 kGy then decreased with dose increment. The antimicrobial activity film was studied against white mulberry-borne bacterial pathogens either Gram positive or Gram negative bacteria and has positive impact of gamma irradiation on the antimicrobial activity. The use of the selected chitosan nano-composite film which irradiated by dose of 2.5 kGy and has magnesium oxide of average particle size 54.3 nm as new packaging materials found to improve storage quality and shelf-life of mulberry fruit.

Keywords

Radiation Chitosan nano-composite film Antibacterial activity Environmental packaging 

References

  1. 1.
    Vasile C, Kulshreshtha AK (2003) Handbook of polymer blends and composites, vol 4. Rapra Technology Ltd., ShrewsburyGoogle Scholar
  2. 2.
    Husseinsyah S, Azmin AN, Ismail H (2013) Effect of maleic anhydride-grafted-polyethylene (MAPE) and silane on properties of recycled polyethylene/chitosan biocomposites. Polym-Plast Technol Eng 52:168–174CrossRefGoogle Scholar
  3. 3.
    Cui Z, Beach ES, Anastas PT (2011) Modification of chitosan films with environmentally benign reagents for increased water resistance. Green Chem Lett Rev 4:35–40CrossRefGoogle Scholar
  4. 4.
    Shu XZ, Zhu KJ, Weihong S (2001) Novel pH-sensitive citrate cross-linked chitosan film for drug controlled release. Int J Pharm 212:19–28CrossRefPubMedGoogle Scholar
  5. 5.
    Gawish SM, Abo El-Ola SM, Ramadan AM, Abou El-Kheir AA (2012) Used as a crosslinking agent for the grafting of chitosan onto woolen fabric. J Appl Polym Sci 123:3345–3353CrossRefGoogle Scholar
  6. 6.
    Sundrarajan M, Suresh J, Rajiv Gandhi R (2012) A comparative study on antibacterial properties of MgO nanoparticles prepared under different calcination temperature. Dig J Nanomater Biostruct 7:983–989Google Scholar
  7. 7.
    Awwad AM, Ahmad AL (2014) Biosynthesis, characterization, and optical properties of magnesium hydroxide and oxide nanoflakes using citrus limon leaf extract. Arab J Phys Chem 1:65–70Google Scholar
  8. 8.
    Abdel Moez A, Aly SS, Elshaer YH (2012) Effect of gamma radiation on low density polyethylene (LDPE) films: optical, dielectric and FTIR studies. Spectrochim Acta A 93:203–207CrossRefGoogle Scholar
  9. 9.
    Muzzarelli RAA (1996) Chitosan-based dietary foods. Carbohydr Polym 29:309–316CrossRefGoogle Scholar
  10. 10.
    Rosiak J, Ulanski P, Kucharska M, Dutkiewicz J, Judkiewicz L (1992) Radiation sterilization of chitosan sealant for vascular prostheses. J Radioanal Nucl Chem 1:87–96CrossRefGoogle Scholar
  11. 11.
    Desai KG, Jin H (2006) Study of gamma-irradiation effects on chitosan microparticles. Drug Deliv 13:39–50CrossRefPubMedGoogle Scholar
  12. 12.
    Haldorai Y, Shim J-J (2014) An efficient removal of methyl orange dye from aqueous solution by adsorption onto chitosan/MgO composite: a novel reusable adsorbent. Appl Surf Sci 292:447–453CrossRefGoogle Scholar
  13. 13.
    Sibi S, Pragathiswaran C, Venkatesan S, Anthuvan BS, Kullagounder S (2016) Chitosan and reinforced chitosan films for the removal of Cr(VI) heavy metal from synthetic aqueous solution. Orient J Chem 32:671–680CrossRefGoogle Scholar
  14. 14.
    Patel MK, Ali MA, Agrawal MZafaryab,VV, Rizvi MMA, Ansari ZA, Ansari SG, Malhotra BD (2013) Biocompatible nanostructured magnesium oxide-chitosan platform for genosensing application. Biosens Bioelectron 45:181–188CrossRefPubMedGoogle Scholar
  15. 15.
    Sanuja S, Agalya A, Umapathy MJ (2014) Studies on magnesium oxide reinforced chitosan bionanocomposite incorporated with clove oil for active food packaging application. Int J Polym Mater Polym Biomater 63:733–740CrossRefGoogle Scholar
  16. 16.
    Kojima Y, Kimura T, Nakagawa K, Asai A, Hasumi K, Oikawa S, Miyazawa T (2010) Effect of mulberry leaf extract rich in 1-deoxynojirimycin on blood lipid profiles in humans. J Clin Biochem Nutr 47:155–161CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lee SH, Jeong E, Paik S,-S, Jeon JH, Jung SW, Kim H-B, Kim M, M-H Chun, I-B Kim (2014). Cyanidin-3-glucoside extracted from mulberry fruit can reduce N-methyl-N-nitrosourea-induced retinal degeneration in rats. Curr Eye Res 39:79–87CrossRefPubMedGoogle Scholar
  18. 18.
    Kim SB, Chang BY, Jo YH, Lee SH, Han SB, Hwang BY, Kim SY, MK Lee (2013) Macrophage activating activity of pyrrole alkaloids from Morus alba fruits. J Ethnopharmacol 145:393–396CrossRefPubMedGoogle Scholar
  19. 19.
    Niidome T, Takahashi K, Goto Y, Goh S, Tanaka N, Kamei K, Ichida M, Hara S, Akaike A, Kihara T, Sugimoto H (2007) Mulberry leaf extract prevents amyloid beta-peptide fibril formation and neurotoxicity. Neuroreport Neurophysiol Basic Clin 18:813–816Google Scholar
  20. 20.
    Rashmi MM, Kiran P, Anuradar V (2012) Synthesis and characterization of oxazolidones with improved thermal stability. Adv Appl Sci Res 3:2553–2560Google Scholar
  21. 21.
    Oxoid manual (1982) The Oxoid manual of culture media, ingredients and other laboratory services, 5th edn. Oxoid limited, HampshireGoogle Scholar
  22. 22.
    El-Bialy HA, Abou El-Nour SA (2015) Physical and chemical stress on Serratia marcescens and studies on prodigiosin pigment production. Ann Microbiol 65:59–68CrossRefGoogle Scholar
  23. 23.
    Vattem DA, Lin YT, Labbe RG, Shetty LK (2004) Phenolic antioxidant mobilization in cranberry pomace by solid-state bioprocessing using food grade fungus Lentinus edodes and effect on antimicrobial activity against selected food borne pathogens. Innov Food Sci Emerg Technol 5:81–86CrossRefGoogle Scholar
  24. 24.
    Chen Z, Zhu C, Han Z (2011) Effects of aqueous chlorine dioxide treatment on nutritional components and shelf-life of mulberry fruit (Morus alba L.). J Biosci Bioeng 111:675–681CrossRefPubMedGoogle Scholar
  25. 25.
    Vatsha B, Tetyana P, Shumbula PM, Ngila JC, Sikhwivhilu LM (2013) Effects of precipitation temperature on nanoparticle surface area and antibacterial behaviour of Mg(OH)2 and MgO nanoparticles. J Biomater Nanobiotechnol 4:365–373CrossRefGoogle Scholar
  26. 26.
    Epure V, Griffon M, Pollet E, Avérous L (2011) Structure and properties of glycerol-plasticized chitosan obtained by mechanical kneading. Carbohydr Polym 83:947–952CrossRefGoogle Scholar
  27. 27.
    Cissé M, Montet D, Loiseau G, Ducamp-Collin M-N (2012) Influence of the concentrations of chitosan and glycerol on edible film properties showed by response surface methodology. J Polym Environ 20:830–837CrossRefGoogle Scholar
  28. 28.
    Othman SH (2014) Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. Agric Agric Sci Procedia 2:296–303CrossRefGoogle Scholar
  29. 29.
    Yang F, Li X, Cheng M, Gong Y, Zhao N, Zhang X, Yang Y (2002) Performance modification of chitosan membranes induced by gamma irradiation. J Biomater Appl 16:216–226CrossRefGoogle Scholar
  30. 30.
    García MA, de la Paz N, Castro C, Rodríguez JL, Rapado M, Zuluaga R, Gañán P, Casariego A (2015) Effect of molecular weight reduction by gamma irradiation on the antioxidant capacity of chitosan. J Radiat Res Appl Sci 8:190–200CrossRefGoogle Scholar
  31. 31.
    Sánchez-González L, González-Martínez C, Chiralt A, Cháfer M (2010) Physical and antimicrobial properties of chitosan–tea tree essential oil composite films. J Food Eng 98:443–452CrossRefGoogle Scholar
  32. 32.
    Muzzarelli R, Filippini O, Tarsi R, Giovanetti E, Biagini G, Varaldo PE (1990) Antimicrobial properties of N-carboxybutyl chitosan. Antimicrob Agents Chemother 34:2019–2023CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Liu H, Du YM, Wang XH, Sun LP (2004) Chitosan kills bacteria through cell membrane damage. Int J Food Microbiol 95:147–155CrossRefPubMedGoogle Scholar
  34. 34.
    Raafat D, Sahl HG (2009) Chitosan and its antimicrobial potential—a critical literature survey. Microb Biotechnol 2:186–201CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Yamamoto O, Ohira T, Alvarez K, Fukuda M (2010) Antibacterial characteristics of CaCO3–MgO composites. Mater Sci Eng B 173:208–212CrossRefGoogle Scholar
  36. 36.
    Tang Z-X, Lv B-F (2014) MgO nanoparticles as antibacterial agent: preparation and activity. Braz J Chem Eng 31:591–601CrossRefGoogle Scholar
  37. 37.
    Leung YH, Ng AMC, Xu X, Shen Z, Gethings LA, Wong MT, Chan C et al (2014) Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small 10:1171–1183CrossRefPubMedGoogle Scholar
  38. 38.
    Falguera V, Quintero JP, Jiménez A, Muñoz JA, Ibarz A (2011) Edible films and coatings: Structures, active functions and trends in their use. Trends Food Sci Technol 22:292–303CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. M. Abdel Ghaffar
    • 1
  • H. E. Ali
    • 2
  • Sh. M. Nasef
    • 1
  • Heba A. El-Bialy
    • 3
  1. 1.Industrial Irradiation Division, Radiation Research of Polymer Chemistry DepartmentNational Center for Radiation Research and Technology, Atomic Energy AuthorityCairoEgypt
  2. 2.Radiation Research Division, Radiation Chemistry DepartmentNational Center for Radiation Research and Technology, Atomic Energy AuthorityCairoEgypt
  3. 3.Biotechnology Division, Radiation Microbiology DepartmentNational Center for Radiation Research and Technology, Atomic Energy AuthorityCairoEgypt

Personalised recommendations