Advertisement

Journal of Network and Systems Management

, Volume 28, Issue 1, pp 81–107 | Cite as

Latency Control of ICN Enabled 5G Networks

  • Shahin VakiliniaEmail author
  • Halima Elbiaze
Article
  • 152 Downloads

Abstract

5G definition falls broadly into order of achievable data rate and reduction in end-to-end latency. Thanks to emerging technologies many features are available in the 5G design to detect, control and avoid congestion in the backhaul networks. In fact, 5G results from the conjunction of several recent technological developments, chief among them the re-purposing of next generation of wireless networks for large-scale functional connectivity and carrying of massive heterogeneous contents. For instance, information centric networks, as a promising candidate for the wireless caching architecture, can cache the contents and prohibits traffic avalanche entering the backhaul via content-based networking. The main objective of this paper is to minimize latency in 5G backhaul networks. The contribution of this paper is a twofold: (a) a distributed algorithm at the back-haul switches is proposed to detect and handle the congestion temporarily and locally with considering the fairness, IP friendliness, latency and convergence time. (b) an SDN-based centralized algorithm is proposed to treat the congestion via dynamic route selection, load-balancing, the orchestration of heterogeneous RBS components.

Keywords

5G Congestion avoidance Latency ICN Caching MEC C-RAN SDN 

Notes

References

  1. 1.
    Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M., Queseth, O., Schellmann, M., Schotten, H., Taoka, H., Tullberg, H.: Scenarios for 5G mobile and wireless communications: the vision of the METIS project. IEEE Commun. Mag. 52(5), 26–35 (2014)CrossRefGoogle Scholar
  2. 2.
    Demestichas, P., Georgakopoulos, A.: 5G on the horizon: key challenges for the radio-access network. IEEE Veh. Technol. Mag. 8(3), 47–53 (2013)CrossRefGoogle Scholar
  3. 3.
    Gupta, A., Jha, R.K.: A survey of 5G network: architecture and emerging technologies. IEEE Access 3, 1206–32 (2015)CrossRefGoogle Scholar
  4. 4.
    Carofiglio, G., Gallo, M., Muscariello, L., Perino, D.: Scalable mobile backhauling via information-centric networking. In: The 21st IEEE International Workshop on Local and Metropolitan Area Networks, pp. 1–6 (2015)Google Scholar
  5. 5.
    Salsano, S., Blefari-Melazzi, N., Detti, A., Morabito, G., Veltri, L.: Information centric networking over SDN and OpenFlow: architectural aspects and experiments on the OFELIA testbed. Comput. Netw. 57(16), 3207–3221 (2013)CrossRefGoogle Scholar
  6. 6.
    Woo, S., Jeong, E., Park, S., Lee, J., Ihm, S., Park, K.: Comparison of caching strategies in modern cellular backhaul networks. In: Proceeding of ACM MobiSys (2013)Google Scholar
  7. 7.
    Rodrigues, M., Dn, G., Gallo, M.: Enabling transparent caching in LTE mobile backhaul networks with SDN. In: Proceeding of IEEE Computer Communications Workshops (INFOCOM WKSHPS), pp. 724–729 (2016)Google Scholar
  8. 8.
    Liang, C., Yu, F.R., Zhang, X.: Information-centric network function virtualization over 5G mobile wireless networks. IEEE Netw. 29(3), 68–74 (2015)CrossRefGoogle Scholar
  9. 9.
    Rost, P., Bernardos, C.J., De Domenico, A., Di Girolamo, M., Lalam, M., Maeder, A., Sabella, D., Wbben, D.: Cloud technologies for flexible 5G radio access networks. IEEE Commun. Mag. 52(5), 68–76 (2014)CrossRefGoogle Scholar
  10. 10.
    Checko, A., Christiansen, H.L., Yan, Y., Scolari, L., Kardaras, G., Berger, M.S., Dittmann, L.: Cloud RAN for mobile networksa technology overview. IEEE Commun. Surv. 17(1), 405–26 (2015)CrossRefGoogle Scholar
  11. 11.
    Bastug, E., Bennis, M., Debbah, M.: Living on the edge: the role of proactive caching in 5G wireless networks. IEEE Commun. Mag. 52(8), 82–89 (2014)CrossRefGoogle Scholar
  12. 12.
    Wubben, D., Rost, P., Bartelt, J.S., Lalam, M., Savin, V., Gorgoglione, M., Dekorsy, A., Fettweis, G.: Bene ts and impact of cloud computing on 5G signal process- ing: flexible centralization through cloud-ran. IEEE Signal Process. Mag. 31(6), 35–44 (2014)CrossRefGoogle Scholar
  13. 13.
    Öhlen, P., Skubic, B., Rostami, A., Laraqui, K., Cavaliere, F., Varga, B., Fonseca, N.: Flexibility in 5G transport networks: the key to meeting the demand for connectivity. Ericsson Technol. Rev. 3, 1–8 (2015)Google Scholar
  14. 14.
    Landstrm, S., Bergstrm, J., Westerberg, E., Hammarwall, D.: NB- IoT: a sustainable technology for connecting billions of devices. Ericsson Technol. Rev. 4, 211 (2016)Google Scholar
  15. 15.
    Drake, E., Elkhayat, I., Quinet, R., Wenmyr, E., Wu, J.: Paving the way to telco-Grade PAAS. Ericsson Technol. Rev. 6, 4354 (2016)Google Scholar
  16. 16.
    Pompili, D., Hajisami, A., Tran, T.X.: Elastic resource utilization framework for high capacity and energy efficiency in cloud RAN. IEEE Commun. Mag. 54(1), 26–32 (2016)CrossRefGoogle Scholar
  17. 17.
    Ren, Y., Li, J., Shi, S., Li, L., Wang, G., Zhang, B.: Congestion control in named data networking: a survey. Comput. Commun. 86, 1–11 (2016)CrossRefGoogle Scholar
  18. 18.
    Yi, C., Afanasyev, A., Wang, L., Zhang, B., Zhang, L.: Adaptive forwarding in named data networking. ACM SIGCOMM Comput. Commun. Rev. 42(3), 6267 (2012)CrossRefGoogle Scholar
  19. 19.
    Yi, C., Afanasyev, A., Moiseenko, I., Wang, L., Zhang, B., Zhang, L.: A case for stateful forwarding plane. Comput. Commun. Inf. Centric Netw. 36(7), 779791 (2013)Google Scholar
  20. 20.
    Wang, X., Chen, M., Taleb, T., Ksentini, A., Leung, V.: Cache in the air: exploiting content caching and delivery techniques for 5G systems. IEEE Commun. Mag. 52(2), 1–18 (2014)Google Scholar
  21. 21.
    Braun, S., Monti, M., Sifalakis, M., Tschudin, C.: An empirical study of receiver-based AIMD flow-control strategies for CCN. In: Proceeding of IEEE International Conference on Computer Communication and Networks (ICCCN) (2013)Google Scholar
  22. 22.
    Braun, S., Monti, M., Sifalakis, M., Tschudin, C.: TCP co-existence in the future internet: should CCN be compatible to TCP? In: 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM 2013) May 27, pp. 1109–1115. IEEE (2013)Google Scholar
  23. 23.
    Dukkipati, N.: Rate control protocol (rcp): congestion control to make flows complete quickly, Ph.D. Dissertation, Stanford University, Stanford, CA, USA: ford, p. 2008. CA, USA (2008)Google Scholar
  24. 24.
    Yang, C.Q., Reddy, A.V.: A taxonomy for congestion control algorithms in packet switching networks. IEEE Netw. 9(4), 34–45 (1995)CrossRefGoogle Scholar
  25. 25.
    Carofiglio, G., Gallo, M., Muscariello, L.: ICP: design and evaluation of an interest control protocol for content-centric networking. In: Proceeding of IEEE INFOCOM Workshop on Emerging Design Choices In Name Oriented Networking (INFO-COM NOMEN) (2012)Google Scholar
  26. 26.
    Salsano, S., Detti, A., Cancellieri, M., Pomposini, M., Blefari-Melazzi, N.: Receiver driven interest control protocol for content-centric networks. In: Proceeding of ACM SIGCOMM Workshop on Information Centric Networking (ICN) (2012)Google Scholar
  27. 27.
    Amadeo, M., Molinaro, A., Campolo, C., Sifalakis, M.: Transport layer design for named data wireless networking. In: Proceeding of IEEE INFOCOM Workshop on Name-Oriented Mobility (2014)Google Scholar
  28. 28.
    Arianfar, S., Nikander, P., Eggert, L., Ott, J.: Contug: a receiver driven transport protocol for content-centric networks. In: Proceeding of IEEE ICNP (2010)Google Scholar
  29. 29.
    Saino, L., Cocora, C., Pavlou, G.: CCTCP: a scalable receiver-driven congestion control protocol for content centric networking. In: Proceeding of IEEE ICC13 (2013)Google Scholar
  30. 30.
    Carofiglio, G., Gallo, M., Muscariello, L., Papalini, M.: Multipath congestion control in content-centric networks. In: Proceeding of IEEE INFOCOM 2013 Workshop on Emerging Design Choices in Name-Oriented Networking (2013)Google Scholar
  31. 31.
    Fu, T., Li, Y., Lin, T., Tan, H., Tang, H., Ci, S.: An effective congestion control scheme in content-centric networking. In: Proceeding of 13th International Conference on Parallel and Distributed Computing, Applications and Technologies (2012)Google Scholar
  32. 32.
    Ren, Y., Li, J., Shi, S., Li, L., Chang, X.: An interest control protocol for named data networking based on explicit feedback. In: Proceeding of the 11th ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS 15) (2015)Google Scholar
  33. 33.
    Zhou, J., Wu, Q., Li, Z., Kaafar, M.A., Xie, G.: A proactive transport mechanism with explicit congestion notification for NDN. In: Proceeding of ICC (2015)Google Scholar
  34. 34.
    Rozhnova, N., Fdida, S.: An effective hop-by-hop interest shaping mechanism for CCN communications. In: Proceeding of IEEE INFOCOM NOMEN Workshop (2012)Google Scholar
  35. 35.
    Wang, Y., Rozhnova, N., Narayanan, A., Oran, D., Rhee, I.: An improved hop-by-hop interest shaper for congestion control in named data networking. In: Proceeding of ICN13 (2013)Google Scholar
  36. 36.
    Carofiglio, G., Gallo, M., Muscariello, L.: Joint hop-by-hop and receiver-driven interest control protocol for content-centric networks. In: Proceeding of ACM SIGCOMM Workshop on Information Centric Networking (ICN) (2012)Google Scholar
  37. 37.
    Zhang, F., Xu, C., Zhang, Y., Reznik, A., Liu, H., Qian, C.: A transport protocol for content-centric networking with explicit congestion control. In: Proceeding of the 23rd International Conference on Computer Communications and Networks (ICCCN) (2014)Google Scholar
  38. 38.
    Zhang, F., Zhang, Y., Reznik, A., Liuc, H., Qiand, C., Xue, C.: Providing explicit congestion control and multi-homing support for content-centric networking transport. Comput. Commun. 69, 6978 (2015)CrossRefGoogle Scholar
  39. 39.
    Matsuzono, K., Asaeda, H.: NRTS: content name-based real-time streaming. In: Proceeding of 13th IEEE Annual Consumer Communications and Networking Conference (CCNC) pp. 537–543 (2016)Google Scholar
  40. 40.
    Matsuzono, K., Asaeda, H.: NMRTS: content name-based mobile realtime streaming. IEEE Commun. Mag. 54(8), 92–8 (2016)CrossRefGoogle Scholar
  41. 41.
    Carofiglio, G., Gallo, M., Muscariello, L.: Optimal multipath congestion control and request forwarding in information-centric networks: protocol design and experimentation. Comput. Netw. 110, 10417 (2016)Google Scholar
  42. 42.
    Mahdian, M., Arianfar, S., Gibson, J., Oran, D.: MIRCC: multipath-aware ICN rate-based congestion control. In: Proceedings of the 2016 Conference on 3rd ACM Conference on Information-Centric Networking, pp. 1–10 (2016)Google Scholar
  43. 43.
    Chen, J., Arumaithurai, M., Fu, X., X., Ramakrishnan, K.K.: SAID: A Control Protocol for Scalable and Adaptive Information Dissemination in ICN. arXiv:1510.08530 (2015)
  44. 44.
    Schneider, K., Yi, C., Zhang, B., Zhang, L.: A practical congestion control scheme for named data networking. In: Proceedings of the 2016 Conference on 3rd ACM Conference on Information-Centric Networking, pp. 21–30 (2016)Google Scholar
  45. 45.
    Raina, G., Towsley, D., Wischik, D.: Part II: control theory for buffer sizing. ACM SIGCOMM Comput. Commun. Rev. 35(3), 79–82 (2005)CrossRefGoogle Scholar
  46. 46.
    Bhattacharyya, S., Towsley, D., Kurose, J.: The loss path multiplicity problem in multicast congestion control. Proc. IEEE INFOCOM 2, 856–63 (1999)Google Scholar
  47. 47.
    Nichols, K., Jacobson, V., McGregor, A., Iyengar, J.: Controlled delay active queue management, RFC 8289. http://rfc-editor.org/rfc/rfc8289.txt (2016)
  48. 48.
    Duffield, N., Lund, C., Thorup, M.: Properties and prediction of flow statistics from sampled packet streams. In: Proceedings of the 2nd ACM SIGCOMM Workshop on Internet measurement, pp. 159–171 (2002)Google Scholar
  49. 49.
    Duffield, N., Lund, C., Thorup, M.: Estimating flow distributions from sampled flow statistics. IEEE/ACM Trans. Netw. (TON) 13(5), 933–946 (2005)CrossRefGoogle Scholar
  50. 50.
    Cheng, G.: Estimating the number of active flows from sampled packets. In: IEEE Network Operations and Management Symposium, pp. 675–678 (2012)Google Scholar
  51. 51.
    Hu, C., Liu, B., Zhao, H., Chen, K., Chen, Y., Cheng, Y., Wu, H.: Discount counting for fast flow statistics on flow size and flow volume. IEEE/ACM Trans. Netw. (TON) 22(3), 97081 (2014)CrossRefGoogle Scholar
  52. 52.
    Choi, W., Seok, W.: Time-based forwarding control in content centric networking. In: Proceeding of 18th International Conference on Advanced Communication Technology (ICACT), pp. 643–646 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ericsson Research Team, CanadaUniversité de Québec à Montréal (UQAM)MontrealCanada
  2. 2.Département d’informatiqueUniversité de Québec à Montréal (UQAM)MontrealCanada

Personalised recommendations