Journal of Network and Systems Management

, Volume 27, Issue 1, pp 233–268 | Cite as

Collaborative Service Discovery in Mobile Social Networks

  • Michele GirolamiEmail author
  • Dimitri Belli
  • Stefano Chessa


Mobile social networking is a recent paradigm arisen from the wide spread of mobile and wearable devices. Based on the short-range communication interfaces of these devices it is possible to establish opportunistic communications among them and build networks independent to the global one. Challenges introduced by this new type of networks are related to the sharing of resources and services and to the exploitation of the communication opportunities among devices. Limit of existing algorithms, that have sought to fill these shortages, is the lack of attention on the main actor of this service-oriented chain, the user. To this purpose, we introduce the COllaborative seRvice DIscovery ALgorithm (CORDIAL) that leverages both mobility and sociality of the users. We evaluate the performance of CORDIAL combined with different routing protocols for opportunistic networks, and we compare it with a benchmark algorithm (S-Flood) based on flooding and another service discovery algorithm designed to leverage mobile social network features, namely, ServIce DiscovEry in Mobile sociAl Networks (SIDEMAN). Our results show that the performance of CORDIAL remains stable with the different routing algorithms and that, in function of the query forwarding strategy triggered, CORDIAL matches the performance of S-Flood in terms of Query Response Time, achieving a better proactivity score with respect S-Flood and SIDEMAN as well.


Social mobility Ad-hoc networking Service-oriented architectures Delay-tolerant communications Opportunistic routing Mobility datasets Community detection 



  1. 1.
    Girolami, M., Chessa, S., Caruso, A.: On service discovery in mobile social networks: survey and perspectives. Comput. Netw. 88, 51–71 (2015). CrossRefGoogle Scholar
  2. 2.
    Álvarez-García J.A., Arcos García A., Chessa S., Fortunati L., Girolami M.: Detecting social interactions in working environments through sensing technologies. In: 7th International Symposium on Ambient Intelligence (ISAmI), University of Sevilla (Spain), 1–3 June 2016. Appears in Advances in Intelligent Systems and Computing, vol. 476, pp. 21–29Google Scholar
  3. 3.
    Eagle, N., Pentland, A.: Reality mining: sensing complex social systems. Pers. Ubiquit. Comput. 10(4), 255–268 (2006)CrossRefGoogle Scholar
  4. 4.
    Matic, A., Osmani, V., Mayora-Ibarra, O.: Analysis of social interactions through mobile phones. Mobile Netw. Appl. 17(6), 808–819 (2012)CrossRefGoogle Scholar
  5. 5.
    Wyatt, D., Choudhury, T., Bilmes, J., Kitts, J.A.: Inferring colocation and conversation networks from privacy-sensitive audio with implications for computational social science. ACM Trans. Int. Syst. Technol. (TIST) 2(1), 7 (2011)Google Scholar
  6. 6.
    McPherson, M., Lovin, L.S., Cook, J.M.: Birds of a feather: homophily in social networks. Ann. Rev. Sociol. 27, 415–444 (2001)CrossRefGoogle Scholar
  7. 7.
    Chakraborty, D., Joshi, A., Yesha, Y., Finin, T.: Toward distributed service discovery in pervasive computing environments. IEEE Trans. Mob. Comput. 5(2), 97–112 (2006)CrossRefGoogle Scholar
  8. 8.
    Girolami M., Ferro E., Chessa S.: Discovery of services in smart cities of mobile social users. In: Management of Cloud and Smart city systems (MoCS), Larnaca, Cyprus, 6–9 July 2015, pp. 1081–1086Google Scholar
  9. 9.
    Girolami M., Chessa S., Basagni S., Furfari F.: Service discovery in mobile social networks. In: IEEE 25th Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC’14), Washington, DC, USA, 2–5 September 2014, pp. 1464–1468Google Scholar
  10. 10.
    Girolami, M., Basagni, S., Furfari, F., Chessa, S.: SIDEMAN: service discovery in mobile social networks. Ad Hoc & Sens. Wirel. Netw. 34, 1–39 (2016)Google Scholar
  11. 11.
    Hui P., Yoneki E., Chan S.Y., Crowcroft J.: Distributed community detection in delay tolerant networks. In: Proceedings of ACM/IEEE Mobility Architecture, pp. 7:1–7:8 (2007)Google Scholar
  12. 12.
    Orlinski, M., Filer, N.: The rise and fall of spatio-temporal clusters in mobile ad hoc networks. Ad Hoc Netw. 11(5), 1641–1654 (2013)CrossRefGoogle Scholar
  13. 13.
    Borgia E., Conti M., Passarella A.: Autonomic detection of dynamic social communities in opportunistic networks. In: Ad hoc Networking Workshop (Med-Hoc-Net), 2011 The 10th IFIP Annual Mediterranean, pp. 142–149Google Scholar
  14. 14.
    Vahdat A., Becker D.: Epidemic routing for partially connected ad hoc networks. Technical Report, Duke University (2000)Google Scholar
  15. 15.
    Spyropoulos T., Psounis K., Raghavendra C.S.: Spray and wait: an efficient routing scheme for intermittently connected mobile networks. In: Proceedings of ACM SIGCOMM workshop on delay-tolerant networking (WDTN), New York, NY, USA, pp.252–259 (2005)Google Scholar
  16. 16.
    Lindgren, A., Doria, A., Schelén, O.: Probabilistic routing in intermittently connected networks. SIGMOBILE Mob. Comput. Commun. Rev. 7(3), 19–20 (2003)CrossRefGoogle Scholar
  17. 17.
    Hui P., Crowcroft J., Yoneki E.: Bubble rap: social-based forwarding in delay tolerant networks. In: Proceedings of 9th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), New York, NY, USA, pp. 241–250 (2008)Google Scholar
  18. 18.
    Ververidis, N., Polyzos, G.C.: Service discovery for mobile ad hoc networks: a survey of issues and techniques. IEEE Commun. Surv. Tutor. 10(3), 30–45 (2008)CrossRefGoogle Scholar
  19. 19.
    Klein M., Konig-Ries B., Obreiter P.: Service rings—a semantic overlay for service discovery in ad hoc networks. In: DEXA, pp. 180–185 (2003)Google Scholar
  20. 20.
    Aguilera U., López-de-Peña D.: A parameter-based service discovery protocol for mobile ad-hoc networks. In: Li, X.-Y., Papavassiliou, S., Ruehrup, S. (eds.) Proceedings of 11th International Conference on Ad-hoc, Mobile, and Wireless Networks (ADHOC-NOW), pp 274–287. Springer, Berlin (2012)Google Scholar
  21. 21.
    Helal S., Desai N., Verma V., Lee C.: Konark—a service discovery and delivery protocol for ad-hoc networks. In: IEEE WCNC ‘03, pp. 2107–2113Google Scholar
  22. 22.
    Nguyen T. D., Rouvrais S.: A socially inspired peer-to-peer resource discovery service for delay tolerant networks. In: OTM 2007, pp. 960–969Google Scholar
  23. 23.
    Le Sommer N., Said R., Maheo Y.: A proxy-based model for service pro-vision in opportunistic networks. In: MPAC Workshop, pp. 7–12 (2008)Google Scholar
  24. 24.
    Al Hayat S.A., Aly S., Hares K.A.: Pipe: impact of power-awareness on social-based opportunistic advertising. In: Proceedings of IEEEWCNC (2014)Google Scholar
  25. 25.
    He, Z., Cai, Z., Han, Q., Tong, W., Sun, L., Li, Y.: An energy efficient privacy-preserving content sharing scheme in mobile social networks. Pers. Ubiquit. Comput. 20(5), 833–846 (2016)CrossRefGoogle Scholar
  26. 26.
    Le Sommer N., Maheo Y.: OLFServ: an opportunistic and location-aware forwarding protocol for service delivery in disconnected MANETs. In: Ubicomm, 2011, pp. 115–122Google Scholar
  27. 27.
    Mei A., Morabito G., Santi P., Stefa J.: Social-aware stateless forwarding in pocket switched networks. In: IEEE INFOCON 2011, pp. 251–255Google Scholar
  28. 28.
    Scott J., Gass R., Crowcroft J., Hui P., Diot C., Chaintreau A.: CRAWDAD data set cambridge/haggle (v. 2006-01-31) (2006).
  29. 29.
    Kiukkonen N., Blom J., Dousse O., Gatica-Perez D., Laurila J.: Towards rich mobile phone datasets: lausanne data collection campaign. In: Proceedings of ACM International Conference on Pervasive Services (ICPS), Berlin (2010)Google Scholar
  30. 30.
    Laurila J.K., Gatica-Perez D., Aad I., Blom J., Bornet O., Do T.-M.-T., Dousse O., Eberle J., Miettinen M.: The mobile data challenge: big data for mobile computing research. In: Pervasive Computing (2012)Google Scholar
  31. 31.
    Chessa, S., Girolami, M., Foschini, L., Ianniello, R., Corrido, A., Bellavista, P.: Mobile crowd sensing management with the participact living lab. Pervasive Mob. Comput. (2016). Google Scholar
  32. 32.
    Keränen A., Ott J., Kärkkäinen T.: The ONE simulator for DTN protocol evaluation. In: SIMUTools ‘09: Proceedings of the 2nd International Conference on Simulation Tools and Techniques (ICST), New York, NY, USA (2009)Google Scholar
  33. 33.
    Lim, H., Kim, C.: Flooding in wireless ad hoc networks. Comput. Commun. 4(34), 353–363 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Istituto di Scienza e Tecnologie dell’Informazione – Consiglio Nazionale delle Ricerche (ISTI-CNR)PisaItaly
  2. 2.Department of Computer ScienceUniversity of PisaPisaItaly

Personalised recommendations